Checking date: 24/01/2025 13:07:01


Course: 2024/2025

Electrical power engineering fundamentals
(14192)
Bachelor in Mechanical Engineering (Plan: 446 - Estudio: 221)


Coordinating teacher: ARNALTES GOMEZ, SANTIAGO

Department assigned to the subject: Electrical Engineering Department

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
Calculus I Calculus II Linear Algebra Physics II
Objectives
By the end of this subject, students will be able to have: 1. A systematic understanding of the key aspects and concepts of electrical engineering; 2. Awareness of the wider multidisciplinary context of engineering. 3. The ability to apply their knowledge and understanding to identify, formulate and solve electrical engineering problems using established methods; 4. The ability to design and conduct appropriate experiments, interpret the data and draw conclusions; 5. Workshop and laboratory skills. 6. The ability to combine theory and practice to solve electrical engineering problems.
Learning Outcomes
RA1.2 An systematic understanding of the key aspects and concepts of their branch of engineering. RA1.4 Awareness of the wider multidisciplinary context of engineering. RA2.1 The ability to apply their knowledge and understanding to identify, formulate and solve engineering problems using established methods. RA4.2 Rhe ability to design and conduct appropriate experiments, interpret the data and draw conclusions. RA4.3 Workshop and laboratory skills. RA5.2 The ability to combine theory and practice to solve engineering problems. CB1 Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2 Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CG1 Ability to resolve problems with initiative, creativity decision-making and critical reasoning skills, and to communicate and transmit knowledge, skills and abilities in the Industrial Engineering area. CG10 Capacity to design and carry out experiments and to analyze and interpret data obtained. CG21 Knowledge and use of the principles of electrical circuits and electric machinery theory.
Description of contents: programme
1. Electrical circuits 1.1 Electrical variables and units 1.2. Topological definitions 1.3. Kirchhoff's laws 1.4. Cicuit elements: resistor, inductor, capacitor and sources. 2. Analysis of DC circuits. 2.1. Parallel and series connections 2.2. Mesh method 2.3. Node method. 2.5. Thévenin and Norton theorems. 2.3. Superposition principle. 3. Analysis of AC circuits. 3.1. Sinusoidal waves and phasors. 3.2. Impedance. 3.3. Circuit analysis in the frequency domain. 3.5. Power in AC circuits and reactive power compensation. 4. Analysis of three phase circuits. 4.1. Structure of a three phase system. 4.2. Phase and line magnitudes. 4.3. Single-phase equivalent circuit. 4.4. Three phase power and reactive compensation. Laboratory sessions about current, voltage and power measurements in DC, AC circuits and three phase systems.
Learning activities and methodology
- Magistral classes for the exposition of the subject content. - Classes in smaller groups for the resolution of circuit analysis exercises. - Individual and collective tutoring for solving student doubts. - Student individual work with proposed exercises. - Laboratory sessions for mounting an electrical circuit and measuring.
Assessment System
  • % end-of-term-examination/test 50
  • % of continuous assessment (assigments, laboratory, practicals...) 50

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • Carlson, A. Bruce. Teoría de Circuitos. Thomson.
  • Fraile Mora, Jesús. Electromagnetismo y circuitos eléctricos. McGraw-Hill.
  • Guillermo Robles. Problemas resueltos de fundamentos de ingeniería eléctrica. Paraninfo. 2015
  • Usaola, Julio y Moreno, Mª. Ángeles. Circuitos eléctricos. Problemas y ejercicios resueltos. Pearson Educación.
Additional Bibliography
  • Conejo Navarro, Antonio. Circuitos eléctricos para la Ingeniería. McGraw-Hill.
  • F. Barrero. Sistemas de Energía Eléctrica. Editorial Thomson.
  • Guirado R., Asensi R., Jurado F., Carpio J. Tecnología Eléctrica. Mc Graw Hill.
  • Gómez Expósito, Antonio, et al.. Teoría de Circuitos. Ejercicios de autoevaluación. Thomson.

The course syllabus may change due academic events or other reasons.