Última actualización: 08/06/2021


Curso Académico: 2021/2022

Tecnologías para la privacidad
(18198)
Titulación: Grado en Ingeniería Informática (218)


Coordinador/a: PERIS LOPEZ, PEDRO

Departamento asignado a la asignatura: Departamento de Informática

Tipo: Optativa
Créditos: 3.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Ninguno
Objetivos
CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a unnivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CB2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio CB3: Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. CE17: Capacidad para conocer los requisitos de seguridad (con énfasis en la privacidad) de los entornos de big data y las consiguientes medidas de protección: técnicas; organizativas y legales, así como conocer y manejar las técnicas de cifrado y su utilización para garantizar la seguridad de los datos. CE18: Capacidad para adquirir conocimientos básicos y fundamentales de arquitecturas de red. CG1: Conocimientos y habilidades adecuados para analizar y sintetizar problemas básicos relacionados con la ingeniería y la ciencia de datos, resolverlos y comunicarlos de forma eficiente. CG2: Conocimiento de materias básicas científicas y técnicas que capaciten para el aprendizaje de nuevos métodos y tecnologías, así como que le dote de una gran versatilidad para adaptarse a nuevas situaciones. CG4: Capacidad para la resolución de los problemas tecnológicos, informáticos, matemáticos y estadísticos que puedan plantearse en la ingeniería y ciencia de datos. CT1: Capacidad de comunicar los conocimientos oralmente y por escrito, ante un público tanto especializado como no especializado. RA1 Haber adquirido conocimientos avanzados y demostrado una comprensión de los aspectos teóricos y prácticos y de la metodología de trabajo en el campo de la ciencias e ingeniería de datos con una profundidad que llegue hasta la vanguardia del conocimiento RA2 Poder, mediante argumentos o procedimientos elaborados y sustentados por ellos mismos, aplicar sus conocimientos, la comprensión de estos y sus capacidades de resolución de problemas en ámbitos laborales complejos o profesionales y especializados que requieren el uso de ideas creativas e innovadoras RA3 Tener la capacidad de recopilar e interpretar datos e informaciones sobre las que fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio;
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1. Introducción a la ciberseguridad 2. Principios de privacidad 3. Introducción a la criptografía avanzada 4. Privacidad en Big data 5. Normativa
Actividades formativas, metodología a utilizar y régimen de tutorías
AF1. CLASES TEÓRICO-PRÁCTICAS. En ellas se presentarán los conocimientos que deben adquirir los alumnos. Estos recibirán las notas de clase y tendrán textos básicos de referencia para facilitar el seguimiento de las clases y el desarrollo del trabajo posterior. Se resolverán ejercicios, prácticas problemas por parte del alumno y se realizarán talleres y pruebas de evaluación para adquirir las capacidades necesarias. AF2. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. AF3. TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE AF8: TALLERES Y LABORATORIOS. AF9: EXAMEN FINAL. En el que se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. MD1: THEORETICAL CLASS. The professor will give in-class presentations, including computer and audiovisual aids in which the course¿s main concepts are developed. Additional materials and literature will also be provided in order to supplement the student¿s learning. MD2: PRACTICAL CASES. Students will be required to resolve case studies, problems, etc. posed by the professor both individually and in groups. MD3: TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. MD6: PRÁCTICAS DE LABORATORIO. Docencia aplicada/experimental a talleres y laboratorios bajo la supervisión de un tutor.
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40
Calendario de Evaluación Continua
Bibliografía básica
  • Torra Vicenç. Data Privacy: Foundations, New Developments and the Big Data Challenge. Springer . 2017

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.