Última actualización: 31/05/2022


Curso Académico: 2022/2023

Técnicas de visualización para Big Data
(18196)
Titulación: Grado en Ingeniería Informática (218)


Coordinador/a: ONORATI , TERESA

Departamento asignado a la asignatura: Departamento de Informática

Tipo: Optativa
Créditos: 3.0 ECTS

Curso:
Cuatrimestre:




Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1. Comprensión e interpretación de datos en la era del Big Data 2. Analítica visual: historia, definición y proceso de desarrollo. 3. Principios de la interacción hombre-máquina: Percepción, aspectos cognitivos, semiótica y creatividad. 4. Interacción con interfaces visuales y multimodales 5. Procesamiento de datos temporales y geo-espaciales. 6. Aplicaciones de la analítica visual
Actividades formativas, metodología a utilizar y régimen de tutorías
* Clases magistrales: 1 ECTS. Tienen por objetivo alcanzar las competencias específicas cognitivas de la asignatura, así como las competencias transversales capacidad de análisis y abstracción. * Clases prácticas: 1 ECTS. Tienen por objetivo iniciar el desarrollo de las competencias específicas instrumentales, así como las competencias transversales resolución de problemas y aplicación de conocimientos. * Caso práctico: 0,5 ECTS. Iniciado durante las clases prácticas y terminado fuera de las mismas, tiene por objetivo completar e integrar el desarrollo de todas las competencias específicas y transversales, en el diseño e implementación de un caso práctico mediante trabajo en grupo. * Tutorías: TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. * Examen final: 0,5 ECTS. Tiene por objeto incidir y complementar en el desarrollo de las capacidades específicas cognitivas y procedimentales. Refleja especialmente el aprovechamiento de las clases magistrales.
Sistema de evaluación
  • Peso porcentual del Examen Final 20
  • Peso porcentual del resto de la evaluación 80
Calendario de Evaluación Continua

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.