Checking date: 20/01/2025


Course: 2024/2025

Communications networks and services
(13847)
Bachelor in Mobile and Space Communications Engineering (Study Plan 2019) (Plan: 442 - Estudio: 217)


Coordinating teacher: OLIVA DELGADO, ANTONIO DE LA

Department assigned to the subject: Telematic Engineering Department

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
Access Networks and Shared Media
Objectives
This course introduces the basic principles of communication networks and services (protocol architecture, routing, congestion control, etc.) showing by means of application to real networks. The main objective of this course is to analyse both architectural principles and the mechanisms that are required in order to exchange data between computers, work stations, servers and other data processing devices. To achieve this objective, the student must acquire specific knowledge and capacities. Regarding knowledge, at the end of the course the student will be able to: - Understand the network concept and the different types of existing networks - Understand the Internet network layer, IPv4: know the datagram format and the addressing model. ARP. ICMP. - Understanding the IPv6 protocol: header format and addressing. - Understand basic address management tools, NATs and DHCP. - Understand routing protocols and algorithms. - Understand Internet routing protocols by means of an example: RIP. - Understand Internet transport layer: TCP and UDP. Regarding capacities, at the end of the course the student will be able to: - Define the IP addressing (IPv4 and IPv6) for a certain network. Design that network architecture. Properly configure the network layer of the different hosts. Properly configure the routers to support the communication of local area networks. - Understand routing protocols. - Understand and configure NATs. - Understand and analyse TCP behaviour in diverse situations, scalability, interactive traffic, congestion.
Learning Outcomes
CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CG1: Ability to write, develop and sign projects in the area of telecommunications engineering aimed at design, development and utilization of telecommunications and electronic networks, services and applications, in accordance with the competences acquired in the degree program, as set out in Section 5 of the corresponding mandate. ECRT1: Ability to learn and acquire autonomously the requisite new knowledge for design, development and utilization of telecommunication systems and services. ECRT12: Knowledge and use of the concepts of network architecture, protocol and communications interfaces. ECRT13: Ability to differentiate the concepts of network access and transport, circuit switching and packet switching networks, fixed and mobile networks as well as systems and applications of distributed networks, voice services, audio, data, video and interactive services and multimedia. ECRT14: Knowledge of network and routing interconnection methods as well as the basics of network planning and sizing based on traffic parameters. RA1: Knowledge and Understanding. Knowledge and understanding of the general fundamentals of engineering, scientific and mathematical principles, as well as those of their branch or specialty, including some knowledge at the forefront of their field. RA5: Applications. Graduates will have the ability to apply their knowledge and understanding to solve problems, conduct research, and design engineering devices or processes. These skills include knowledge, use and limitations of materials, computer models, process engineering, equipment, practical work, technical literature and information sources. They must be aware  of all the implications of engineering practice: ethical, environmental, commercial and industrial. RA6: Generic competences. Graduates will have the generic skills necessary for engineering practice, and which are widely applicable. First, to work effectively, both individually and as a team, as well as to communicate effectively. In addition, demonstrate awareness of the responsibility of engineering practice, social and environmental impact, and commitment to professional ethics, responsibility and standards of engineering practice. They must also have knowledge of business and project management practices, as well as risk management and control, and understand their limitations. Finally, have the capacity for continuous learning.
Description of contents: programme
This is a course on communications through the Internet where basic technologies to interconnect different computers are studied. The programme is divided in three parts: FIRST PART: Introduction to computer networks and Internet. I.1 Network concept and types. I.2 Internet structure. SECOND PART: Network layer II.1 Basic network layer concepts. II.2 IPv4 introduction: IPv4 header, fragmentation, ICMP. II.3 IPv4 addressing: IP network design, IP address management, DHCP, NAT, motivation for IPv6. II.4 IPv4 over Ethernet, ARP. II.5 Introduction to IPv6: header format, addressing, Neighbor Discovery. II.6 Network routing: distance vector protocols, links state protocols and path vector protocols. Dijkstra and Bellman-Ford algorithms. II.7 Routing in Internet: intra-domain routing and inter-domain routing, RIP. THIRD PART: Transport layer III.1 Basic transport layer concepts. III.2 UDP. III.3 TCP: segment structure, error control, connection management, flow control, and congestion control.
Learning activities and methodology
The teaching methodology based on active learning will include: (1) Lectures. The course has a basic reference book (see bibliography). The student will know exactly what are the learning objectives for every class and where in the reference book can they be located. Additional questions will also be provided to test the knowledge acquired after this study. In the group classes the concepts related to the learning objectives will be reviewed interactively with students participation. The course will also propose complementary bibliography to allow students to complete and detail particular chapters. (2) Laboratory classes where students will set up router and host configurations and where network and transport layers will be analysed. (3) Guided use cases resolution in small groups to help students acquire the required skills. (4) Exercises and study case solved by students as personal work so that they will be able to auto-evaluate acquired skills. (5) Group discussion of homework that will allow to develop the skill of analysing and communicating the relevant information so as to solve problems.
Assessment System
  • % end-of-term-examination 0
  • % of continuous assessment (assigments, laboratory, practicals...) 100

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • J. F. Kurose, K. W. Ross. Computer Networking, a top-down approach; 6th edition. Pearson Addison Wesley, 2013.
  • S. Hagen. IPv6 Essentials, 3rd edition. O'Reilly Media. 2014
Additional Bibliography
  • Andrew Tanenbaum. Computer Neworks; 4ª Edición. Prentice Hall, 2003.
  • Dimitri P. Bertsekas. Data networks. Prentice-Hall International, 1992.
  • Ivan Vidal, Ignacio Soto, Albert Banchs, Jaime Garcia-Reinoso, Ivan Lozano, Gonzalo Camarillo. Multimedia Networking Technologies, Protocols, & Architectures. Artech House. 2019
  • Mischa Schwartz. Telecommunication networks, protocols, modeling and analysis. Addison-Wesley, 1987.
  • Rick Graziani. IPv6 Fundamentals: A Straightforward Approach to Understanding IPv6. Cisco Press. 2012
  • W. Richard Stevens. TCP-IP illustrated. Addison-Wesley, 1996.
  • William Stallings. Data and Computer Communications. Prentice Hall International, 2001.
  • Ying-Dar Lin, Ren-Hung Hwang, Fred Baker. Computer Networks, An Open Source Approach. McGraw-Hill. 2012

The course syllabus may change due academic events or other reasons.