Checking date: 20/01/2025


Course: 2024/2025

Microprocessor based digital systems
(13843)
Bachelor in Mobile and Space Communications Engineering (Study Plan 2019) (Plan: 442 - Estudio: 217)


Coordinating teacher: SANCHEZ REILLO, RAUL

Department assigned to the subject: Electronic Technology Department

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
The lecturers strongly advise students who want to take this course have previously studied both "Digital Electronics" and "Electronic Components and Circuits". "Digital Electronics" covers combinational and sequential digital electronics, acquiring knowledge about the digital building blocks. The second, "Electronic Components and Circuits", it is important to know the basic electronic components and electronic wiring plate or breadboard test and evaluate its operation using basic tools and laboratory equipment. It is also very important that the student is able to program a computer application. Therefore, the Faculty strongly recommends the students to have passed subjects like "Programming", "Systems Programming" and "Systems Architecture". Another subject that can help students for this course is "Systems and Circuits", with allows the analysis of electronic circuits.
Objectives
The main objective is that the student learns about microprocessor technology, and how to analyse and develop solutions based on such technology. The student will learn about microprocessors, their internal architecture, the use of microcontrollers and the most used peripherals. Programming will be done using C-language, using a semi-professional Integrated Development Environment (IDE). The student will also learn about how to debug solutions, in order to be able to detect errors and develop robust solutions. With all this in mind, the partial objectives are: - To know the basics of the different microprocessor internal architectures. - To learn the benefits of using microcontrollers. - To learn to use an IDE to develop microcontroller-based systems - To apply medium/high-level programming languages to develop solutions for microprocessors/microcontrollers - To learn to use the most common microcontroller peripherals. - To be able to analyse microprocessor-based solutions - To be able to develop microprocessor-based solutions
Learning Outcomes
CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CG3: Knowledge of basic and technological subject areas which enable acquisition of new methods and technologies, as well as endowing the technical engineer with the versatility necessary to adapt to any new situation. CG13: Understanding and command of basic concepts of linear systems and related functions and transformers. Electrical circuit theory, electronic circuits, physical principles of semiconductors and logic families, electronic and photonic devices, materials technology and their application in resolving problems characteristic of engineering. ECRT9: Ability to analyze and design combinational and sequential circuits, synchronous and asynchronous circuits, and use of microprocessors and integrated circuits. ECRT10: Knowledge and application of the fundamentals of hardware description languages in computers with conventional, sequential, parallel and multi-processing architecture. RA1: Knowledge and Understanding. Knowledge and understanding of the general fundamentals of engineering, scientific and mathematical principles, as well as those of their branch or specialty, including some knowledge at the forefront of their field. RA2: Analysis. Graduates will be able to solve engineering problems through an analysis process, identifying the problem, recognising specifications, establishing different methods of resolution, selecting the most appropriate one and implementing it correctly. They must be able to use various methods and recognize the importance of social constraints, human health, safety, the environment, as well as commercial constraints. RA5: Applications. Graduates will have the ability to apply their knowledge and understanding to solve problems, conduct research, and design engineering devices or processes. These skills include knowledge, use and limitations of materials, computer models, process engineering, equipment, practical work, technical literature and information sources. They must be aware  of all the implications of engineering practice: ethical, environmental, commercial and industrial.
Description of contents: programme
1. Introduction to microprocessor based digital systems 2. Software Development: Integrated Development Environment 2.1. C language integrated development environment. 2.2. Peripherals I/O Libraries 3. General Input/Output Pins 4. Exceptions and Interrupt Systems 5. Timers 6. Analog/Digital and Digital/Analog Conversion 7. Serial Asynchronous Communication 8. Serial Synchronous Communication 9. Additional functionalities: RTC, Watchdog, Power consumption, etc. 10. System design examples and analysis 11. Architecture of a microprocessor/microcontroller system. 11.1. Central Processing Unit (CPU). 11.2. Memory Structure. 11.3. Interface Modules. 12. Machine level programming: Assembler. 12.1. Machine instructions and addressing modes.
Learning activities and methodology
The course competences provide certain skills as a result of the program, through different activities. For each program outcome, we briefly describe the activities provided within the course: - In the course, exercises are held where students have to complete/develop their programs to meet certain requirements. They are asked to interpret and develop electronic circuits, block diagrams and flowcharts. - The course includes a laboratory design exercise, with an initial set of specifications that the students must meet by the end of the term. The problem is a manageable version of an electronic system design, that the students must solve using the given resources (microcontroller development board, debugger, peripherals). - Design and analysis examples are presented to the students as guidance on good programming practices and electronic design techniques, showing how to use specific peripherals to solve different problems. - The students must be able to comment their program code appropriately, develop program flow diagrams, use schematic capture programs for their designs. This will be evaluated comprehensively in laboratory works. - The students are required to work using engineering tools such as a microcontroller Integrated Development Environment (IDE) program, a development board, as well as a debugger.
Assessment System
  • % end-of-term-examination 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • Development system manufacturer. Development system manual. Development system manufacturer.
  • Lecturers. Collection of exercises . UC3M - Electronics Technology Department.
  • Lecturers. Collection of notes, slides and additional documentation. UC3M - Electronics Technology Department.
  • Microcontoller Manufacturer . Microcontroller datasheet. Microcontoller Manufacturer .
Recursos electrónicosElectronic Resources *
Additional Bibliography
  • [Clements] Alan Clements. Principles of Computer Hardware. Oxford University Press.
(*) Access to some electronic resources may be restricted to members of the university community and require validation through Campus Global. If you try to connect from outside of the University you will need to set up a VPN


The course syllabus may change due academic events or other reasons.


More information: https://ocw.uc3m.es/course/view.php?id=260