Checking date: 20/01/2025


Course: 2024/2025

Digital Electronics
(13492)
Bachelor in Mobile and Space Communications Engineering (Study Plan 2019) (Plan: 442 - Estudio: 217)


Coordinating teacher: PORTELA GARCIA, MARTA

Department assigned to the subject: Electronic Technology Department

Type: Basic Core
ECTS Credits: 6.0 ECTS

Course:
Semester:

Branch of knowledge: Engineering and Architecture



Objectives
The objective of this course is to introduce students to the operation, analysis, and design of digital circuits. The fundamentals of hardware description languages and digital circuit design in VHDL will also be introduced. At the end of this course, the following skills will have been acquired: - Know the purpose and basic operation of digital circuits - Analyze and use digital circuits - Design digital circuits
Learning Outcomes
CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CG3: Knowledge of basic and technological subject areas which enable acquisition of new methods and technologies, as well as endowing the technical engineer with the versatility necessary to adapt to any new situation. CG13: Understanding and command of basic concepts of linear systems and related functions and transformers. Electrical circuit theory, electronic circuits, physical principles of semiconductors and logic families, electronic and photonic devices, materials technology and their application in resolving problems characteristic of engineering. ECRT9: Ability to analyze and design combinational and sequential circuits, synchronous and asynchronous circuits, and use of microprocessors and integrated circuits. RA1: Knowledge and Understanding. Knowledge and understanding of the general fundamentals of engineering, scientific and mathematical principles, as well as those of their branch or specialty, including some knowledge at the forefront of their field. RA2: Analysis. Graduates will be able to solve engineering problems through an analysis process, identifying the problem, recognising specifications, establishing different methods of resolution, selecting the most appropriate one and implementing it correctly. They must be able to use various methods and recognize the importance of social constraints, human health, safety, the environment, as well as commercial constraints. RA5: Applications. Graduates will have the ability to apply their knowledge and understanding to solve problems, conduct research, and design engineering devices or processes. These skills include knowledge, use and limitations of materials, computer models, process engineering, equipment, practical work, technical literature and information sources. They must be aware  of all the implications of engineering practice: ethical, environmental, commercial and industrial.
Description of contents: programme
1. Number systems and information representation 1.1. Number Systems 1.2. Number Systems Conversions 1.3. Binary Codes 2. Boolean Algebra and logic functions 2.1. Postulates and fundamental properties of Boolean Algebra 2.2. Boolean functions and expressions 2.3. Logic gates. Implementation of logic functions 2.4. Minimization of logic functions 3. Introduction to design and implementation of digital circuits 3.1. Technologies for implementing digital circuits 3.2. Hardware description languages 3.3. Design flow: simulation and automatic synthesis 3.4. Basic concepts of VHDL design 4. Combinational circuits and VHDL description 4.1. Basic combinational circuits 4.1.1. Encoders 4.1.2. Decoders 4.1.3. Multiplexers 4.1.4. Demultiplexers 4.1.5. Comparators 4.2. Association of basic combinational circuits 4.3. Logic function implementation using combinational circuits 5. Arithmetic combinational circuits and VHDL description 5.1. Representing signed numbers 5.2. Sign and magnitude, 1s-complement and 2s-complement 5.3. Binary Arithmetic 5.3.1. Addition and subtraction 5.3.2. Multiplication and division 5.4. Representing real numbers 5.5. Addition and Subtraction Circuits 5.6. Circuits for multiplication 5.7. Arithmetic Logic Units (ALUs) 6. Flip-Flops and VHDL description 6.1. Asynchronous flip-flops 6.2. Synchronous flip-flops 6.3. Flip-flop control logic 6.4. Timing characteristics 6.5. Synchronous circuits 6.6. Circuits with flip-flops: chronograms 7. Synchronous sequential circuits and VHDL description 7.1. Finite State Machines 7.1.1. Moore model 7.1.2. Mealy model 7.2. Synchronous Sequential Circuits Analysis 7.3. Synchronous Sequential Circuits Synthesis 8. Registers and Counters and VHDL description 8.1. Registers 8.2. Counters 8.2.1. Synchronous counters 8.2.2. Counter as a Finite State Machine 8.2.3. Counter applications 9. Memories and VHDL description 9.1. Memory types 9.2. Characteristics of memories 9.3. Internal organization of a memory 9.4. Extension of memory size 9.5. Memory access chronograms 9.6. Applications 10. Digital Systems 10.1. Structure of a digital system 10.1.1. Data path 10.1.2. Control Unit 10.2. Introduction to digital systems design 10.2.1. ASICs 10.2.2. Programmable logic devices 10.2.3. Microprocessors
Learning activities and methodology
- 40% Lectures: 2,4 ECTS. Intended to reach the specific competences of the course. Students will receive class notes and reference books in order to work and get in-depth knowledge on the course contents. - 40% Problem classes: 2,4 ECTS. Oriented to exercise resolution and Ongoing Evaluation. - 20% Lab practices: 1,2 ECTS. Design and development of digital circuits using simulation tools with the aid of the professor
Assessment System
  • % end-of-term-examination 0
  • % of continuous assessment (assigments, laboratory, practicals...) 100

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • Abramovici, M.. Digital system testing and testable design. Computer Science Press. 1990
  • B. Mealy. Free Range VHDL. The no-frills guide to writing powerful code for your digital implementations. open-source (http://www.freerangefactory.org/).
  • FLOYD, T.L. Digital Systems Fundamentals. Prentice Hall.
  • HAYES, J.P.. Introduction to Digital Logic Design. Addison Wesley.
  • J. M. Rabaey. Circuitos Integrados Digitales: Una perspectiva de diseño. Prentice Hall. 2000
  • Tocci R.J., Widmer N.S., Moss, G.L.. Digital Systems: Principles and Applications. Pearson Prentice Hall.
Recursos electrónicosElectronic Resources *
Additional Bibliography
  • D. D. Gajski . Principios de Diseño Digital. Prentice-Hall.
  • J. F. Wakerly . Digital Design Principles and Practices. Pearson Education.
  • Javier García. Problemas resueltos de Electrónica Digital. Paraninfo/Thomson.
Recursos electrónicosElectronic Resources *
(*) Access to some electronic resources may be restricted to members of the university community and require validation through Campus Global. If you try to connect from outside of the University you will need to set up a VPN


The course syllabus may change due academic events or other reasons.