Última actualización: 17/04/2024


Curso Académico: 2024/2025

Cálculo I
(13488)
Grado en Ingeniería de Comunicaciones Móviles y Espaciales (Plan: 442 - Estudio: 217)


Coordinador/a: COLORADO HERAS, EDUARDO

Departamento asignado a la asignatura: Departamento de Matemáticas

Tipo: Formación Básica
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:

Rama de Conocimiento: Ingeniería y Arquitectura



Objetivos
El estudiante deberá ser capaz de formular, resolver e interpretar matemáticamente problemas propios de la ingeniería. Para ello es necesario que se familiarice en este primer curso de cálculo con las funciones reales de una variable real, sus propiedades de continuidad, derivabilidad, integrabilidad y su representación gráfica. Deberá conocer y entender los conceptos de derivada e integral y sus aplicaciones prácticas. Manejará también sucesiones y series de números reales y de funciones, que aplicará a la aproximación numérica de funciones y a la resolución de ecuaciones.
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
Tema I: Sucesiones y series numéricas. 1.1. La recta real, conjuntos de números, desigualdades, valor absoluto, intervalos y conjunto en el plano. 1.2. Principio de inducción matemática. 1.3. Sucesiones de números y conceptos fundamentales. Sucesiones recurrentes. Límites de sucesiones, Fórmula de Stirling y Criterio de Stoltz. 1.4. Series de números, conceptos fundamentales. Criterios de convergencia para series de números positivos, convergencia absoluta, convergencia condicional y criterio de Leibniz. Tema II: Límite y continuidad de funciones. 2.1. Funciones elementales, transformaciones elementales, composición de funciones y función inversa. Coordenadas polares. 2.2. Límites de funciones, definición y teoremas fundamentales. Cálculo de límites. 2.3. Continuidad de funciones, propiedades y teoremas fundamentales. Tema III: Derivación. 3.1. Derivación de funciones. Definiciones, reglas de derivación, derivadas de funciones elementales, significado de la derivada. 3.2. Regla de Bernoulli-L'Hôpital. Teoremas básicos sobre derivación. 3.3. Problemas de optimización de funciones de dos variables sujetas a una condición. 3.4. Convexidad y asíntotas. Gráficas de funciones. 3.5. Polinomio y serie de Taylor, definición, propiedades y ejemplos. Cálculo de límites con el polinomio de Taylor. Intervalo de convergencia de una serie de Taylor. Tema IV: Integración. 4.1. Cálculo de primitivas: integrales inmediatas, integración por partes, por descomposición en fracciones simples, cambio de variable y otros métodos de integración. 4.2. Integral definida y teoremas fundamentales del cálculo. Aplicaciones geométricas y físicas de la integral definida.
Actividades formativas, metodología a utilizar y régimen de tutorías
La metodología docente incluirá: - Clases magistrales, donde se presentarán los conocimientos que los alumnos deben adquirir. Para facilitar su desarrollo los alumnos recibirán las notas de clase y tendrán textos básicos de referencia que les facilite seguir las clases y desarrollar el trabajo posterior. - Resolución de ejercicios por parte del alumno que le servirá de autoevaluación y para adquirir las capacidades necesarias. - Tutorías. - Evaluación final.
Sistema de evaluación
  • Peso porcentual del Examen Final 40
  • Peso porcentual del resto de la evaluación 60

Calendario de Evaluación Continua


Convocatoria extraordinaria: normativa
Bibliografía básica
  • BRADLEY, G. L., SMITH, K. J.. "Cálculo de una variable". Prentice - Hall.
  • LARSON, R., EDWARDS, B. H.. Cálculo 1 de una variable. McGrawHill. 2010
  • PESTANA, D., RODRÍGUEZ, J. M., ROMERA, E., TOURÍS, E., ÁLVAREZ, V., PORTILLA, A.. "Curso práctico de Cálculo y Precálculo". Ariel.
  • SALAS, S. L. , HILLE, E. , ETGEN, G. J.. "Calculus de una y varias variables", Vol. 1,. Reverté.
Recursos electrónicosRecursos Electrónicos *
Bibliografía complementaria
  • BURGOS, J.. "Cálculo infinitesimal de una variable". McGraw - Hill.
  • DEMIDOVICH, B.P.. "5000 problemas de análisis matemático". Thomson Paraninfo.
  • EDWARDS, C. H., PENNEY, D. E.. "Cálculo diferencial e integral". Prentice Hall.
  • SPIVAK, M.. "Cálculus". Reverté.
  • STEWART, J.. "Cálculo, conceptos y contextos". Thomson.
  • THOMAS, G. B., FINNEY, R. L.. "Cálculo una variable". Addison-Wesley.
Contenido detallado de la asignatura o información adicional para TFM
(*) El acceso a algunos recursos electrónicos puede estar restringido a los miembros de la comunidad universitaria mediante su validación en campus global. Si esta fuera de la Universidad, establezca una VPN


El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.