CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study.
CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study.
ECRT1: Ability to learn and acquire autonomously the requisite new knowledge for design, development and utilization of telecommunication systems and services.
ECRT5: Ability to weigh the advantages and disadvantages of different alternative technologies for development and implementation of communication systems, from the point of view of signal space, perturbations and noise and analog and digital modulation.
ECRT6: Ability to conceive, develop, organize and manage telecommunication networks, systems, services and structures in residential (home, city, digital communities), business and institutional contexts, responsibility for its set up, continuous improvement, as well as determining social and economic impact.
ETEGISC1: Ability to construct, use and manage telecommunication networks, services, processes and applications, such as systems for capture, transport, representation, processing, storage, multimedia information presentation and management, from the point of view of transmission systems.
RA1: Knowledge and Understanding. Knowledge and understanding of the general fundamentals of engineering, scientific and mathematical principles, as well as those of their branch or specialty, including some knowledge at the forefront of their field.
RA2: Analysis. Graduates will be able to solve engineering problems through an analysis process, identifying the problem, recognising specifications, establishing different methods of resolution, selecting the most appropriate one and implementing it correctly. They must be able to use various methods and recognize the importance of social constraints, human health, safety, the environment, as well as commercial constraints.
RA3: Design. Graduates will have the ability to make engineering designs according to their level of knowledge and understanding, working as a team. Design encompasses devices, processes, methods and objects, and specifications that are broader than strictly technical, including social awareness, health and safety, environmental and commercial considerations.
RA5: Applications. Graduates will have the ability to apply their knowledge and understanding to solve problems, conduct research, and design engineering devices or processes. These skills include knowledge, use and limitations of materials, computer models, process engineering, equipment, practical work, technical literature and information sources. They must be aware of all the implications of engineering practice: ethical, environmental, commercial and industrial.
RA6: Generic competences. Graduates will have the generic skills necessary for engineering practice, and which are widely applicable. First, to work effectively, both individually and as a team, as well as to communicate effectively. In addition, demonstrate awareness of the responsibility of engineering practice, social and environmental impact, and commitment to professional ethics, responsibility and standards of engineering practice. They must also have knowledge of business and project management practices, as well as risk management and control, and understand their limitations. Finally, have the capacity for continuous learning.