Checking date: 24/05/2025 21:18:57


Course: 2025/2026

Networks Theory
(13417)
Bachelor in Telematics Engineering (Study Plan 2019) (Plan: 447 - Estudio: 215)


Coordinating teacher: HERNANDEZ GUTIERREZ, JOSE ALBERTO

Department assigned to the subject: Telematic Engineering Department

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
- Algebra and Calculus fundamentals - Basic knowledge of probability and statistics - Basic knowledge of communication networks - Programming
Objectives
The goal of this course is to allow the student knowing the basic foundamentals to be able to model and analize performance, as well as design and dimention, communication networks, considering both packet switching and circuit switching. To this aim, the student must acquire a certain knowledge and develop a number of compentences With respect to knowledge, the student should be able to - Understand the basic results form Markov Chain theory (in particular, Queueing Theory), as a modeling and performance assessment tool for communication netorks and protocols. - Understand the use and limitations of the different results from classic queueing theory when modeling communication networks. - Formulate dimensioning problems, and solve them, being aware of the different analytical tools available. - Develop and use simulation tools to assess performance of communication networks, and to optimize them. With respect to competences, the outcome of the course can be classified in two different groups, one related to particular competences closely related to the course specific, and another set related to the degree¿s program outcomes (PO¿s). Concerning specific competences, the student should be able to - Apply Markov Chain theory to analyze networks performance - Formulate and solve optimization and dimensioning problems - Design and perform simulations-based experiments, to solve performance analysis and dimensioning problems. This will require processing and analyzing simulaiton results. - Develop the basic components of a simulation tool in order to analyze performance of communication networks. Concerning the competences related to the degree¿s program outcomes, after this course - The student will be provided with a ¿bird¿s view¿ of the problem of performance analysis of communication networks (PO i) - He/she will be able to program/use analytical and simulation tools for performance assessment and network design (PO a, b) - Will be develop teamwork abilities, to fulfil the requirements of the analytical and simulation asignments - Make extensive use of the technical literature available - Be able to identify, formulate, and solve design problems related to communication networks (PO e)
Learning Outcomes
CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. ECRT1: Ability to learn and acquire autonomously the requisite new knowledge for the design, development and utilization of telecommunication systems and services. ECRT12: Knowledge and use of the concepts of network architecture, protocol and communications interfaces. ECRT13: Ability to differentiate the concepts of network access and transport, circuit switching and packet switching networks, fixed and mobile networks as well as systems and applications of distributed networks, voice services, audio, data, video and interactive services and multimedia. ECRT14: Knowledge of network and routing interconnection methods as well as fundamentals of network planning and sizing based on traffic parameters. ETEGT1: Ability to construct, develop and manage telecommunication networks, services, processes and applications, such as systems for capture, transport, representation, processing, storage, multimedia information presentation and management, from the point of view of telematics systems. ETEGT2: Capacity to apply techniques on which telematics networks, services and applications are based. These include systems for management, signaling and switching, routing, security (cryptographic protocols, tunneling, firewalls, payment mechanisms, authentication and content protection), traffic engineering (graph theory, queuing theory and tele-traffic). tarification and service reliability and quality, in fixed, mobile, personal, local or long distance environments, with different bandwidths, including telephone and data. ETEGT3: Ability to construct, develop and manage telematics services using analytical planning, sizing and analysis tools. ETEGT6: Ability to design network architectures and telematics services. RA1: Knowledge and Understanding.  Knowledge and understanding of the general fundamentals of engineering, scientific and mathematical principles, as well as those of their branch or specialty, including some knowledge at the forefront of their field. RA3: Design. Graduates will have the ability to make engineering designs according to their level of knowledge and understanding, working as a team. Design encompasses devices, processes, methods and objects, and specifications that are broader than strictly technical, including social awareness, health and safety, environmental and commercial considerations. RA4: Research. Graduates will be able to use appropriate methods to carry out detailed research and studies of technical aspects, commensurate with their level of knowledge. The research involves bibliographic searches, design and execution of experiments, interpretation of data, selection of the best proposal and computer simulation. May require consultation of databases, standards and security procedures. RA5: Applications. Graduates will have the ability to apply their knowledge and understanding to solve problems, conduct research, and design engineering devices or processes. These skills include knowledge, use and limitations of materials, computer models, process engineering, equipment, practical work, technical literature and information sources. They must be aware of all the implications of engineering practice: ethical, environmental, commercial and industrial.
Description of contents: programme
The contents are divided as follows: 1. Introduction to performance analysis of communication protocols and networks, as well as simulation tools. Review of fundamental probability, the exponential random variable, and Poisson arrival processes. 2. Markov Chain: discrete-time and continuous-time. Use of MC as a modeling tool for communications systems. 3. Birth and Death process as a particular case of Markov Chain. Basic queueing theory. 4. Introduction to the analysis of networks of queues, advanced systems, and dimensioning and optimization.
Learning activities and methodology
The learning activities and methodology will be based on the following: 1) Lectures: in these sessions students will be presented with the theoretical concepts related to the course¿s program (as well as some basic examples). They will be provided also with supplementary material, e.g., supporting slides, seminal papers. (PO a, i) 2) Laboratory sessions: in these, students will use modeling and simulation tools to further understand the key concepts described during lectures, as well as to use some standard tools for network dimensioning and to use simulations for performance assessment (PO a, b, e) 3) Exercises sessions with the teacher: these sessions will be devoted to problem formulation and solving, where students will discuss their results from the proposed homework, supported with teacher¿s guidance (PO a, e)
Assessment System
  • % end-of-term-examination/test 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40




Extraordinary call: regulations
Basic Bibliography
  • Mor Harchol-Balter. Performance Modeling and Design of Computer Systems: Queueing Theory in Action. Cambridge University Press. 2013
Recursos electrónicosElectronic Resources *
Additional Bibliography
  • Dimitri P. Bertsekas, Robert G. Gallager. Data Networks. Prentice Hall. 1992
  • José Alberto Hernández, Pablo Serrano. Probabilistic models for computer networks: Tools and solved problems. Lulu.com. 2015
(*) Access to some electronic resources may be restricted to members of the university community and require validation through Campus Global. If you try to connect from outside of the University you will need to set up a VPN


The course syllabus may change due academic events or other reasons.