Última actualización: 21/01/2025


Curso Académico: 2024/2025

Teoría moderna de la detección y estimación
(14994)
Grado en Ingeniería de Sonido e Imagen (Plan 2019) (Plan: 441 - Estudio: 214)


Coordinador/a: ALVAREZ PEREZ, LORENA

Departamento asignado a la asignatura: Departamento de Teoría de la Señal y Comunicaciones

Tipo: Obligatoria
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Sistemas y Circuitos Cálculo II Estadística
Objetivos
Al finalizar el curso el alumno comprenderá la naturaleza de los problemas de estimación y decisión. Tomará conciencia de la importancia que tiene en la comprensión de estos problemas el dominio de tres elementos básicos de la teoría de la probabilidad: la verosimilitud, la diferencia entre incertidumbre a priori y a posteriori y el teorema de Bayes. Comprenderá los conceptos de generalización y estadístico suficiente, y percibirá las ventajas (analíticas y computacionales) que presentan los problemas gaussianos y las soluciones lineales en los parámetros. Desde un punto de vista procedimental, el alumno sabrá identificar, en situaciones reales, la necesidad o la conveniencia de aplicar un enfoque analítico o máquina. Adquirirá capacidad para abordar la resolución analítica de un problema de estimación o decisión cuando disponga de información (estadística) completa, y conocerá alguna aproximación semianalítica para escenarios con información parcial. Ante un escenario sin información estadística, sabrá diseñar un modelo de regresión o un clasificador, y utilizar colecciones de datos para ajustar sus parámetros: realizando particiones de los datos en conjuntos de entrenamiento, validación y test, y aplicando algoritmos para dimensionar sistemas de decisión y estimación y ajustar sus parámetros. También, sabrá medir la calidad de estimadores y decisores, y su capacidad de generalización. Por último, sabrá cómo adaptar las herramientas de estimación y decisión al tratamiento de series temporales y manejar soluciones adaptativas. Durante el curso los alumnos estudiarán los anteriores conceptos desde un punto de vista teórico, y procederán también a su puesta en práctica para la resolución de casos concretos en sesiones prácticas. Durante dichas sesiones, los alumnos trabajarán las siguientes capacidades generales: * Capacidad para la identificación y comprensión de problemas concretos de estimación y decisión, así como para proponer soluciones teniendo en cuenta las características y propiedades de dicho problema (disponibilidad de histórico de datos, posibles restricciones de cómputo, etc.). * Capacidad para diseñar los experimentos que permitan evaluar las prestaciones de los sistemas implementados. * Conocimiento de un lenguaje de programación de uso muy extendido para simulación y modelado matemático en ámbitos de ingeniería: Python, así como el uso de Scikit-learn (Sklearn) que es la librería más útil y robusta para aprendizaje máquina en Python.
Resultados del proceso de formación y aprendizaje
CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CB2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. CG3: Conocimiento de materias básicas y tecnologías, que le capacite para el aprendizaje de nuevos métodos y tecnologías, así como que le dote de una gran versatilidad para adaptarse a nuevas situaciones. ECRT4: Capacidad de analizar y especificar los parámetros fundamentales de un sistema de comunicaciones. RA1: Adquirir los conocimientos y la comprensión de los fundamentos básicos generales de la ingeniería, así como en particular, de las redes y servicios de comunicaciones multimedia, procesamiento de señales de audio y video, control de acústica de recintos, sistemas multimedia distribuidos y aplicaciones multimedia interactivas propios de la Ingeniería en Sistemas Audiovisuales dentro de la familia de las telecomunicaciones. RA2: Ser capaces de llevar a cabo un proceso de análisis para resolver problemas de grabación, acondicionamento, compresión de señales de audio y video, acústica de recintos, redes, servicios, sistemas y aplicaciones en Sistemas Audiovisuales. Los egresados serán capaces de realizar la identificación del problema, el reconocimiento de las especificaciones, el establecimiento de diferentes métodos de resolución, la selección del más adecuado y su correcta implementación. Tendrán la capacidad de utilizar diversos métodos y reconocer la importancia de las limitaciones sociales, la salud humana, la seguridad, el Medio Ambiente, así como las comerciales. RA5: Ser competentes de aplicar los conocimientos adquiridos para resolver problemas y diseñar redes y servicios audiovisuales, configurar los dispositivos de las mismas, así como desplegar sobre ellas aplicaciones y servicios audiovisuales adaptativos, personales, llevando la inteligencia de red a la puesta en valor para el usuario, maximizando el potencial de las redes y servicios multimedia en los diferentes ámbitos sociales y económicos, conociendo las implicaciones medio ambientales, comerciales e industriales que tiene la práctica de la ingeniería de acuerdo con la ética profesional.
Descripción de contenidos: Programa
Bloque 0 - Repaso de conceptos básicos de estadística - Variables aleatorias. Distribución de probabilidad y función de distribución. - Distribuciones continuas y discretas. - Definición de esperanza, varianza y covarianza. Momentos - Transformación de variable aleatoria Bloque 1 - Estimación - Definición de un problema de estimación - Diseño de un estimador analítico - Evaluación de estimadores - Diseño de un estimador bajo enfoque máquina Bloque 2 - Decisión - Definición de un problema de decisión - Diseño de un decisor analítico - Características de los decisores - Diseño de un clasificador bajo enfoque máquina Bloque 3 - Filtrado - Introducción al filtrado - Diseño de filtros óptimos
Actividades formativas, metodología a utilizar y régimen de tutorías
TEORÍA Las clases de teoría serán sesiones magistrales en las que se presentarán los conceptos básicos de la asignatura, que irán acompañadas de numerosos ejemplos. (POs a y e) PROBLEMAS Resolución de ejercicios y problemas de carácter similar a los que se plantearán en los exámenes. Los estudiantes dispondrán de forma anticipada de los enunciados para trabajar los problemas con anticipación a su resolución en clase. (POs a y e) PRÁCTICAS Sesiones prácticas de aplicación de los conceptos presentados en la asignatura. El alumno resolverá con ayuda del ordenador problemas de clasificación y estimación con datos reales, evaluando las prestaciones de los sistemas implementados. (PO b). Como ya se ha mencionado, el lenguaje de programación que se utilizará será Python. (PO k) -------- Los horarios de tutorías se publicarán en Aula Global según los horarios lectivos.
Sistema de evaluación
  • Peso porcentual del Examen Final 40
  • Peso porcentual del resto de la evaluación 60

Calendario de Evaluación Continua


Convocatoria extraordinaria: normativa
Bibliografía básica
  • C.M. Bishop. Neural Networks for Pattern Recognition. Oxford, UK: Oxford Univ. Press. 1995
  • C.M. Bishop. Pattern Recognition and Machine Learning. New York, NY: Springer. 2006
  • H. L. Van Trees. Detection, Estimation, and Modulation Theory (vol. I). New York, NY: Wiley. 1968
  • R.O. Duda, P.E. Hart, D.G. Stork. Pattern Classification. New York, NY: Wiley. 2001
  • S. Haykin. Adaptive Filter Theory. Prentice Hall. 2002
Bibliografía complementaria
  • A. Papoulis. Probability, Random Variables, and Stochastic Processes. New York, NY: McGraw-Hill. 2002
  • H. V. Poor. An Introduction to Signal Detection and Estimation. Springer. 1998
  • M. H. Hayes. Statistical Digital Signal Processing and Modelling. Willey. 1996
  • S.M. Kay. Fundamentals of Statistical Signal Processing. Detection Theory. Englewood Cliffs, NJ: Prentice-Hall. 1998

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.