Última actualización: 21/01/2025


Curso Académico: 2024/2025

Comunicaciones por luz visible para industria inteligente
(18499)
Grado en Ingeniería de Sonido e Imagen (Plan: 441 - Estudio: 214)


Coordinador/a: MORALES CESPEDES, MAXIMO

Departamento asignado a la asignatura: Departamento de Teoría de la Señal y Comunicaciones

Tipo: Optativa
Créditos: 3.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
- Principios básicos de las comunicaciones digitales
Objetivos
El alumno debe adquirir las siguientes competencias: - Entender las necesidades de los sistemas de comunicación en la cuarta revolución industrial, así como adquirir los mecanismos básicos para satisfacer estas necesidades. - Adquirir capacidad de analizar la transmisión de información sobre el espectro óptico (luz visible) - Adquirir capacidad para diseñar, analizar y optimizar algoritmos de tratamiento de señales que efectúen las principales funciones de un receptor digital (modulación, sincronización, estimación/igualación de canal, detección, decodificación) sobre un sistema de comunicaciones a través de luz visible. - Adquirir capacidad para diseñar y analizar sistemas de comunicaciones a través de luz visible complejos que combinen varias clases de algoritmos de tratamiento de señales. Al término del proceso formativo, los estudiantes serán capaces de: - A manejar con soltura las herramientas matemáticas y numéricas necesarias para diseñar, analizar y optimizar los elementos de un sistema de comunicaciones a través de luz visible. (modulación, sincronización, estimación/igualación de canal, detección, codificación/decodificación). - A comprender, diseñar, analizar y evaluar sistemas de comunicaciones complejos que combinen varias clases de algoritmos de tratamiento de señales. - Ser capaz de resolver problemas prácticos de diseño de sistemas de comunicaciones utilizando métodos analíticos y simulación.
Competencias y resultados del aprendizaje
CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CB2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. CG3: Conocimiento de materias básicas y tecnologías, que le capacite para el aprendizaje de nuevos métodos y tecnologías, así como que le dote de una gran versatilidad para adaptarse a nuevas situaciones. ECRT6: Capacidad de concebir, desplegar, organizar y gestionar redes, sistemas, servicios e infraestructuras de telecomunicación en contextos residenciales (hogar, ciudad y comunidades digitales), empresariales o institucionales responsabilizándose de su puesta en marcha y mejora continua, así como conocer su impacto económico y social. RA1: Adquirir los conocimientos y la comprensión de los fundamentos básicos generales de la ingeniería, así como en particular, de las redes y servicios de comunicaciones multimedia, procesamiento de señales de audio y video, control de acústica de recintos, sistemas multimedia distribuidos y aplicaciones multimedia interactivas propios de la Ingeniería en Sistemas Audiovisuales dentro de la familia de las telecomunicaciones. RA3: Ser competentes para realizar diseños de ingeniería en su ámbito dentro de la Ingeniería en Sistemas Audiovisuales, trabajando en equipo. El diseño abarca dispositivos, procesos, métodos y objetos, y especificaciones más amplias que las estrictamente técnicas, lo cual incluye conciencia social, salud y seguridad, y consideraciones medioambientales y comerciales. RA5: Ser competentes de aplicar los conocimientos adquiridos para resolver problemas y diseñar redes y servicios audiovisuales, configurar los dispositivos de las mismas, así como desplegar sobre ellas aplicaciones y servicios audiovisuales adaptativos, personales, llevando la inteligencia de red a la puesta en valor para el usuario, maximizando el potencial de las redes y servicios multimedia en los diferentes ámbitos sociales y económicos, conociendo las implicaciones medio ambientales, comerciales e industriales que tiene la práctica de la ingeniería de acuerdo con la ética profesional.
Descripción de contenidos: Programa
Tema 1. Introducción Durante la primera unidad se presenta la posición de las comunicaciones a través de luz visible dentro del espectro radioélectrico, así como la necesidad de explotar frecuencias alternativas a las comunicaciones tradicionales basadas en radiofrecuencia. A continuación, se presentarán las necesidades actuales de la industria inteligente y el papel de las comunicaciones a través de luz visible en estas. Finalmente, se realizará una introducción a los estándares actuales que regulan las comunicaciones mediante luz visible. Tema 2. Propagación de luz visible Desarrollo del esquema de transmisión para comunicaciones mediante luz visible. Presentación de los diferentes tipos de iluminaciones LED y fotodetectores. Descripción del canal punto a punto y papel de las radiaciones difusas en entornos industriales. Diferencias del canal óptico en espacio libre frente al canal en radiofrecuencia. Tema 3. Modulación y detección de información en luz visible Análisis e implementación de los diferentes esquemas de modulación y detección en comunicaciones mediante luz visible. Esquemas mono-portadora y multi-portadora. Gestión de las restricciones impuestas por el canal óptico. Sistemas MIMO ópticos. Tema 4. Geolocalización mediante luz visible Implemenatación de los servicios de geolocalización mediante el despliegue de luminarias LED en entornos industriales. Modelado y precisión del posicionamiento. Tema 5. Internet de las cosas mediante luz visible Gestión de redes de sensores en entornos industriales mediante comunicaciones basadas en luz visible. Compatibilidad con los estándares tradicionales y agrupación de las comunicaciones mediante un gateway óptico. Internet de las cosos como plataforma para la obtención de librerías de datos clasificados que alimenten algoritmos de inteligencia artificial. Tema 6. Práctica, caso práctico. Implementación sobre Matlab de un caso práctico teniendo en cuenta los conocimientos obtenidos a lo largo de la asignatura.
Actividades formativas, metodología a utilizar y régimen de tutorías
Clases de Teoría y problemas. Las clases de problemas están compuestas por lecciones en pizarra con uso de transparencias u otros medios audiovisuales para ilustrar determinados conceptos. Las lecciones teóricas están complementadas por el desarrollo de ejercicios y ejemplos prácticos basados en sistemas de comunicaciones actuales. Al final de cada tema se asignarán una serie de tareas que el alumno debe completar. Prácticas en laboratorio. Las practicas se realizarán en laboratorio. En ellas se evaluará la simulación de diferentes casos prácticos de acuerdo con cada una de las lecciones teóricas. Finalmente, se analizará mediante simulación la implementación de un caso práctico.
Sistema de evaluación
  • Peso porcentual del Examen Final 0
  • Peso porcentual del resto de la evaluación 100

Calendario de Evaluación Continua


Convocatoria extraordinaria: normativa
Bibliografía básica
  • Kaushik Kumar, Divya Zindani, J. Paulo Davim. Industry 4.0: Developments towards the Fourth Industrial Revolution . Springer. 2019
  • Mohamed Gado, Doaa Abd El-Moghith. Li-FI Technology for Indoor Access: Li-Fi . LAP LAMBERT Academic Publishing. 2015
  • Sliven Dimitrov, Harald Haas. Principles of LED Light Communications. Towards Networked Li-Fi. Cambridge University Press. 2018

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.