Checking date: 06/05/2025 17:03:30


Course: 2025/2026

Digital Television
(13342)
Bachelor in Sound and Image Engineering (Study Plan 2019) (Plan: 441 - Estudio: 214)


Coordinating teacher: DIAZ DE MARIA, FERNANDO

Department assigned to the subject: Signal and Communications Theory Department

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
Video System Engineering
Objectives
- Knowledge and management of the basic concepts and techniques in digital television, emphasizing those employed in modern video coding and broadcasting systems. - Knowledge of mathematics and physics related to digital television systems. - Knowledge of the fundamentals and standards in video coding. - Knowledge of the MPEG standards at system level as well as their development and evolution. - Knowledge of the essential subsystems in TV distribution and broadcasting.
Learning Outcomes
CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. ETEGISA1: Ability to construct, develop and manage telecommunication networks, services, processes and applications, such as systems for capture, analog and digital processing, codification, transport, representation, processing, storage, reproduction, audiovisual services presentation and management and multimedia information. ETEGISA2: Ability to analyze, specify, implement and maintain television, audio and video systems, equipment, headends and installations, in fixed as well as mobile environments. RA1: To acquire the knowledge and understanding of the general basic fundamentals of engineering, as well as, in particular, of multimedia communications networks and services, audio and video signal processing, room acoustic control, distributed multimedia systems and interactive multimedia applications specific to Sound and Image Engineering within the telecommunications family. RA2: Be able to carry out an analysis process to solve problems of recording, conditioning, compression of audio and video signals, acoustics of enclosures, networks, services, systems and applications in audiovisual systems. Graduates will be able to identify the problem, recognize the specifications, establish different resolution methods, select the most appropriate one and implement it correctly. They will be able to use various methods and recognize the importance of social constraints, human health, safety, the environment, as well as commercial constraints. RA3: To be competent to carry out engineering designs in their field within Sound and Image Engineering, working as a team. Design encompasses devices, processes, methods and objects, and specifications that are broader than strictly technical, including social awareness, health and safety, environmental and commercial considerations. RA4: To be able to carry out research and carry out innovative contributions in the field of Sound and Image Engineering, including bibliographic search and comprehension as well as the design and development of experiments that solve the challenges of knowledge in the field of audiovisual systems, in terms of the capture, processing, adaptation, diffusion and consumption of multimedia contents, as well as associated networks, services and applications, which justifies the scientific interest of this Degree. RA5: Be competent to apply the knowledge acquired to solve problems and design audiovisual networks and services, to configure their devices, as well as to deploy adaptive, personal audiovisual applications and services on them, bringing network intelligence to the value for the user, maximising the potential of multimedia networks and services in the different social and economic spheres, knowing the environmental, commercial and industrial implications of the practice of engineering in accordance with professional ethics.
Description of contents: programme
1.- Fundamental equipment for TV production 2.- Auxiliary equipment for TV production 3.- Design of control rooms of TV studies 4.- MPEG compression 5.- Compressed-signal Frame format for emission 6.- TV encoding headers 7.- DVB: Channel encoding 8.- DVB: Digital modulations 9.- Digital satellite broadcasting (DVB-S) 10.- Digital terrestrial broadcasting (DVB-T) 11.- Advanced broadcasting systems (DVB-T2/S2) Lab Exercises 1.- TV Studio - Video Mixer - Professional camcorder and ENG 2.- MPEG compression 3.- TDT frame analysis
Learning activities and methodology
Three teaching activities are proposed: theoretical classes and examples, class exercises, and lab exercises. THEORETICAL CLASS AND EXAMPLES The theoretical class will be given in the blackboard, with slides or by any other means to illustrate the concepts of the lectures. In these classes the explanation will be completed with examples. In these sessions the student will acquire the basic concepts of the course. It is important to highlight that these classes require the initiative and the personal and group involvement of the students (there will be concepts that the students themselves should develop). CLASS EXERCISES Before the exercise class, the students will have available the exercise formulation. The students should solve the exercises proposed in order to assimilate the concepts of the lectures in a more complex environment and to self-assess their knowledge. Eventually, the students will make a speech based on secondary subjects derived from the main points in the program. LABORATORY EXERCISES Some basic and selected concepts learnt during the course are applied in the lab. The students should participate actively in the exercise implementation and deal with the results from a critical point of view.
Assessment System
  • % end-of-term-examination/test 40
  • % of continuous assessment (assigments, laboratory, practicals...) 60

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • Charles Poynton . Digital Video and HDTV: Algorithms and Interfaces. Morgan Kaufmann. 2012
  • Herve Benoit. Digital Television: Satellite, Cable, Terrestrial, IPTV, Mobile TV in the DVB Framework. Focal Press. 2008
  • Iain E. G. Richardson. H.264 and MPEG-4 Video Compression. Wiley 2003.
  • Iván Guerrero Vaquerizo. Sistemas de Producción Audiovisual. Ediciones Paraninfo (ISBN: 9788428338783). 2017
  • M. Robin, M. Poullin. Digital Television Fundamentals. McGraw Hill.
  • Marcus Weise. How Video Works: From Analog to High Definition. Morgan Kaufmann. 2007
  • Robert L. Hartwig. Basic TV Technology: Digital and Analog. Focal Press . 2005
  • Walter Fischer. Digital Television: A Practical Guide for Engineers. Springer . 2004
  • Walter Fischer. Digital Television: A Practical Guide for Engineers. Springer . 2004
Additional Bibliography
  • Arch Luther, Andrew Inglis. Video Engineering. McGraw-Hill. 1999
  • Gerald W. Collins. Fundamentals of Digital Television Transmission. Wiley-IEEE Press. 2000
  • Gerald W. Collins. Fundamentals of Digital Television Transmission. Wiley-IEEE Press. 2000
  • Herve Benoit. Digital Television: MPEG-1, MPEG-2 and Principles of the DVB System. Focal Press. 2002
  • John Watkinson. El Arte del Video Digital. Instituto Oficial de RTVE / Focal Press. 1992
  • Keith Jack. Video Demystified: A Handbook for the Digital Engineer. Newnes. 2007
  • Michael Robin, Michel Poulin. Digital Television Fundamentals: Design and installation of video and audio systems. McGraw-Hill Professional . 2000
  • Ulrich Reimers. DVB: The Family of International Standards for Digital Video Broadcasting (Signals and Communication Technology). Springer. 2004

The course syllabus may change due academic events or other reasons.