Checking date: 29/04/2025 16:42:18


Course: 2025/2026

Communication Theory
(13327)
Bachelor in Sound and Image Engineering (Study Plan 2019) (Plan: 441 - Estudio: 214)


Coordinating teacher: LAZARO TEJA, MARCELINO

Department assigned to the subject: Signal and Communications Theory Department

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
Statistics (First year, second semester) Systems and Circuits (First year, second semester) Students are also expected either to have completed or to be simultaneously enrolled at Linear Systems (Second year, first semester)
Objectives
Knowledge and management of the basic concepts and techniques for digital and analog communication such as noise, modulation and demodulation processes in digital communications, the information theory as a tool to establish the limits in communication systems and the fundamental techniques for analog communications. Therefore, the subject has the goal of allowing the student to acquire the following general competences: * Knowledge and development of technical skills required in the telecommunications field with emphasis in the analysis and mathematical characterization of a communication system. The same way than the following specific competences: * Acquisition of the knowledge of mathematics and statistics that will be used as a tool to solve engineering problems in the context of communication systems. (PO a, PO e, and PO k) * The ability to design and conduct experiments, as well as to analyze and interpret data and results. (PO b) * Design of a communication system with the constraints given by its critical parameters such as cost, consume of power, bandwidth, transmission rate, and complexity. (PO c) * Ability of effective communication of information, in speech and in writing. (PO g)
Learning Outcomes
CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CG3: Knowledge of basic and technological subject areas which enable acquisition of new methods and technologies, as well as endowing the technical engineer with the versatility necessary to adapt to any new situation. ECRT5: Ability to weigh the advantages and disadvantages of different alternative technologies for development and implementation of communication systems, from the point of view of signal space, perturbations and noise and analog and digital modulation. RA1: To acquire the knowledge and understanding of the general basic fundamentals of engineering, as well as, in particular, of multimedia communications networks and services, audio and video signal processing, room acoustic control, distributed multimedia systems and interactive multimedia applications specific to Sound and Image Engineering within the telecommunications family. RA2: Be able to carry out an analysis process to solve problems of recording, conditioning, compression of audio and video signals, acoustics of enclosures, networks, services, systems and applications in audiovisual systems. Graduates will be able to identify the problem, recognize the specifications, establish different resolution methods, select the most appropriate one and implement it correctly. They will be able to use various methods and recognize the importance of social constraints, human health, safety, the environment, as well as commercial constraints. RA5: Be competent to apply the knowledge acquired to solve problems and design audiovisual networks and services, to configure their devices, as well as to deploy adaptive, personal audiovisual applications and services on them, bringing network intelligence to the value for the user, maximising the potential of multimedia networks and services in the different social and economic spheres, knowing the environmental, commercial and industrial implications of the practice of engineering in accordance with professional ethics.
Description of contents: programme
Introduction - Definition of a communication system - Functional elements of a communication system - Digital and analog communication systems - Design of a communication systems - Objectives and organization of the course Noise in communication systems - Review: probability, random variables, and random processes - Random processes in the frequency domain - Statistical model for thermal noise Analog modulations - Introduction to the modulation concept - Amplitude modulations - Angle modulations - Effect of noise in analog modulations Modulation and detection in Gaussian channels - Introduction to digital communication systems - Geommetric representation of signals - Digital communication model - Encoder - Modulator - Demodulator - Detector Basic bounds in digital communications - Probabilistic models for information sources - Probabilistic models for channels - Quantitative information measurements - Channel capacity
Learning activities and methodology
Three teaching activities are proposed: Theoretical classes, exercise classes and laboratory exercises. THEORETICAL CLASS AND EXAMPLES (3.5 ECTS) The theoretical class will be given in the blackboard, with slides or by any other means to illustrate the concepts learnt. In these classes the explanation will be completed with examples. In these sessions the student will acquire the basic concepts of the course. It is important to highlight that these classes require the initiative and the personal and group involvement of the students (there will be concepts that the student himself should develop). CLASS EXERCISES (1.5 ECTS) Before the exercise class, the student will have available the exercise formulation. The student should solve the exercises proposed in order to assimilate the concepts obtained in the theoretical class in a more complex environment and to self-evaluate his knowledge. In the exercise class one student will have to present the exercise proposed solving and the rest of students should give feedback on this particular problem solving. This will encourage the opinion exchange between students and the professor and among students LABORATORY EXERCISES (1 ECTS) Basic concepts learnt during the course are applied in the laboratory and by means of simulation. The student should participate actively the exercise implementation; the level of the student involvement in this work grows from the first exercise to the last one where the student will be encouraged to propose and solve the problem.
Assessment System
  • % end-of-term-examination/test 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • J.G. Proakis, M. Salehi. Communications System Engineering, Second Edition. NJ, Prentice-Hall, Englewood Cliff, NJ. 2002
Additional Bibliography
  • Carlson, A.B.. Communication System. McGraw-Hill, New York. 1986
  • Hambley A.R.. An Introduction to Communication Systems. Computer Science Press. 1990

The course syllabus may change due academic events or other reasons.