1. Basic concepts of probability
1.1. Definition and properties of probability
1.2. Conditional probability and total probability formulas
1.3. Independence
1.4. Bayes' theorem
1.5. Combinatorics and elementary probability calculations
2. Discrete univariate random variables
2.1. Cumulative distribution function, probability mass function, expectation, and variance of discrete random variables
2.2. Common discrete distributions: Binomial, Geometric, Poisson ¿ Interpretation of parameters
3. Continuous univariate random variables
3.1. Cumulative distribution function, probability density function, expectation, and variance of continuous random variables
3.2. Common continuous distributions: Exponential, Uniform, Normal ¿ Interpretation of parameters
3.3. Distribution of transformations of random variables
4. Approximation of distributions
4.1. Independence of random variables
4.2. De Moivre-Laplace theorem
4.3. Central Limit Theorem