La asignatura estudia la teoría de funciones de una variable. En particular, se examinan las propiedades de monotonía, continuidad, derivabilidad y concavidad/convexidad de funciones. A medida que se van adquiriendo estos conceptos, se aplican al estudio de cuestiones de interés en Economía, tales como la representación gráfica, aproximación por asíntotas, aproximación local por polinomios y optimización.
El programa se divide en cuatro grandes temas:
Tema 1: propiedades elementales de las funciones. En particular, se estudia cuando una función tiene inversa, cuando es periódica, monótona o presenta simetrías.
Tema 2: continuidad. En concreto, se estudia la cuestión de cuando una función tiene límites y/o asíntotas, el corte de gráficas y la existencia de máximos y mínimos globales.
Tema 3: derivadas, primera parte. Se estudia el cálculo de derivadas, haciendo hincapié en la derivación implícita. Asimismo, la aplicación del cálculo de derivadas para estudiar tanto la monotonía de una función como el cálculo de máximos y mínimos, tanto locales como globales.
Tema 4: derivadas, segunda parte. Se utiliza el concepto de derivada para el cálculo de límites, para aproximar una función localmente por polinomios, para caracterizar la concavidad y convexidad de una función y para un primer estudio de las funciones de ingresos, costes y beneficios.