Checking date: 24/04/2024


Course: 2024/2025

Quantum machine learning
(19585)
Master in Quantum Technologies and Engineering (Plan: 476 - Estudio: 379)
EPI


Coordinating teacher: TORRONTEGUI MUÑOZ, ERIK

Department assigned to the subject: Physics Department

Type: Electives
ECTS Credits: 3.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
Calculus Quantum physics Advanced quantum physics Electromagnetic fields and waves Quantum Computing
Skills and learning outcomes
Description of contents: programme
Part 1.- Introduction to quantum computing (NISQ) ¿ Quantum Computing: general idea, types of quantum computing. ¿ Quantum gates and circuits ¿ Quantum Programming ¿ Quantum variational circuits: general idea Part 2.- Quantum Variational Algorithms (QAOA and VQE) ¿ Quantum Variational Algorithms ¿ Quantum Approximate Optimization Algorithm ¿ Variational Quantum Eigensolver ¿ Issues of QVA¿s: Barren plateaus, expressivity and measurements Part 3.- Quantum Support Vector Machines and Kernel Methods ¿ Classical Kernel Methods: support vector machines and classifiers. ¿ Quantum Kernel Methods ¿ Quantum support vector machines and classifiers Part 4.- Quantum Boltzmann Machines/Generative Models/Unsupervised ¿ Unsupervised classical machine learning and generative models ¿ Quantum Boltzmann Machines ¿ Quantum generative adversarial networks Part 5.- Quantum Neural Networks ¿ Quantum Neural Network classifier ¿ Data re-uploading ¿ Convolutional Quantum Neural Networks ¿ Quantum optical neural networks Part 6.- Recent advances, outlook, other paradigms (recent results)
Learning activities and methodology
Educational activities: - Theory lessons - Tutorial sessions - Practical quantum programming activities - Individual student work Educational Methodologies: - Classroom lessons by lecturers in which the main concepts will be developed. Bibliography will be provided to students as a complement to the main lessons - Solution of practical exercises in the classroom and also individually by students. - Practices on quantum programming.
Assessment System
  • % end-of-term-examination 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40

Calendar of Continuous assessment


Basic Bibliography
  • M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio & Patrick J. Coles. Variational quantum algorithms. Nature Reviews Physics 3, 625¿644 . 2021
  • M. Schuld, I. Sinayskiy, F. Petruccione. An introduction to quantum machine learning. Contemporary Physics, 56:2, 172-185 . 2015
Recursos electrónicosElectronic Resources *
Additional Bibliography
  • M. Cerezo et al., . Challenges and opportunities in quantum machine learning. Nature Computational Science 2, 567. 2022
  • M. Schuld, . Supervised quantum machine learning models are kernel methods. https://arxiv.org/abs/2101.11020. 2021
  • Schölkopf, Bernhard, and Alexander J. Smola . Learning with kernels: support vector machines, regularization, optimization, and beyond. Smola MIT Press. 2002
(*) Access to some electronic resources may be restricted to members of the university community and require validation through Campus Global. If you try to connect from outside of the University you will need to set up a VPN


The course syllabus may change due academic events or other reasons.