Última actualización: 17/07/2024


Curso Académico: 2024/2025

Redes de Neuronas
(19203)
Máster Universitario en Inteligencia Artificial Aplicada (Plan: 475 - Estudio: 378)
Escuela de Ingeniería y Ciencias Básicas


Coordinador/a: LANCHO SERRANO, ALEJANDRO

Departamento asignado a la asignatura: Departamento de Teoría de la Señal y Comunicaciones

Tipo: Optativa
Créditos: 3.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
El curso requiere los siguientes conocimientos básicos: - Cálculo - Programación - Métodos Numéricos
Objetivos
El objetivo fundamental es que el alumno aprenda a diseñar máquinas de decisión basas en redes neuronales para problemas básicos de aprendizaje en datos tabulares y multimedia, atendiendo especialmente a técnicas de regularización y validación. Asimismo, el alumno aprenderá a utilizar paquetes software de diferenciación automática para el entrenamiento de los modelos y la simulación experimenta.
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1. Redes neuronales y algoritmo backpropagation. 2. Optimización de redes neuronales y regularización para datos masivos. Explicabilidad. 3. Arquitecturas profundos y métodos para datos correlados: imágenes, series temporales y grafos
Actividades formativas, metodología a utilizar y régimen de tutorías
MD1 Clase teórica MD3 Clases prácticas MD3 Prácticas de laboratorio MD5 Trabajo en grupo Examenes individuales y tutorías
Sistema de evaluación
  • Peso porcentual del Examen Final 30
  • Peso porcentual del resto de la evaluación 70

Calendario de Evaluación Continua


Bibliografía básica
  • Cristopher Bishop. Pattern Recognition and Machine Learning. Springer . 2006
  • Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press. 2017
  • Kevin Murphy. Machine Learning A Probabilistic Perspective. MIT Press. 2012
Bibliografía complementaria
  • Aston Zhang (Author), Zachary C. Lipton (Author), Mu Li (Author), Alexander J. Smola. Dive into Deep Learning. Cambridge University Press.
  • Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press.

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.