Última actualización: 29/04/2024


Curso Académico: 2024/2025

Análisis y Visualización de Datos
(18934)
Master in Business Administration (MBA) (Plan: 466 - Estudio: 301)
Escuela de Empresa


Coordinador/a: MUÑOZ GARCIA, ALBERTO

Departamento asignado a la asignatura: Departamento de Economía de la Empresa

Tipo: Obligatoria
Créditos: 3.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Son convenientes nociones de Estadística.
Objetivos
Adquirir la capacidad de saber conseguir información, analizarla y extraer conclusiones de ella, utilizando para ello software especializado para Data Mining y casos de estudio reales. Adquisición de la capacidad de relacionar teoría y práctica, de manera que puedan aplicar conceptos y soluciones a contextos organizativos específicos.
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1: Introduction and Descriptive Statistics 1.1 Introduction to the course. 1.2 Introduction to R. Basics, arithmetic with R, variable assignment. Basic data types in R. 1.3 Vectors, matrices, factors, data frames. 1.4 Reading and writing data in R. 2: Exploring categorical and numerical data data. 2.1 Bar charts, contingency tables, counts, proportions, piecharts. 2.2 Histograms, boxplots, visualizing in higher dimensions. 3: Numerical Summaries. 3.1 Measures of center. Median, median, quartiles and quantiles. 3.2 Measures of variability. Variance, standard deviation, IQR. 3.3 Shape and transformations. 3.4 Outliers. 4. Case Study for lessons 1-3. 5. Multivariate Data 5.1 Description of multivariate data. 5.2 Covariance, correlation, distances. 5.3 Visualization of multivariate data: scatterplots, bubble plots, etc. 6. Principal Component Analysis for visualization 6.1 Introduction and main ideas. 6.2 Implementing PCA in R. 6.3 Case Study. 7. Cluster Analysis for data exploration 7.1 Introduction and main ideas. 7.2 Hierarchical Methods. 7.3 Partitioning Methods. 7.4 Case study. 8. Linear Regression 8.1 Univariate Case. 8.2 Multivariate Case. 8.3 Case Study 9. Introduction to Tidyverse. 9.1 Data wrangling 9.2 Data Visualization: ggplot2 9.3 Grouping and summarizing. 10. Final Real case study.
Actividades formativas, metodología a utilizar y régimen de tutorías
ACTIVIDADES FORMATIVAS Clase teórica (15 horas) Clases prácticas (15 horas) Clases complementarias (5 horas) Tutorías (10 horas) Trabajo en grupo e individual del estudiante. METODOLOGÍAS DOCENTES -Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporciona la bibliografía para complementar el aprendizaje de los alumnos. - Resolución de casos prácticos, problemas, etc.¿ planteados por el profesor de manera individual o en grupo - Elaboración de trabajos e informes de manera individual o en grupo USO DE LA INTELIGENCIA ARTIFICIAL - Se permite el uso de herramientas de IA tipo Chat GPT en el área de programación. Chat GPT funciona en este caso como un buscador avanzado de contenidos, de modo que facilita y acelera el proceso de familiarizarse con las herramientas de programación del curso.
Sistema de evaluación
  • Peso porcentual del Examen Final 50
  • Peso porcentual del resto de la evaluación 50

Calendario de Evaluación Continua


Bibliografía básica
  • Antony Unwin. Graphical Data Analisis with R. CRC Press. 2015
  • Robert I. Kabacoff. R in action. Data analysis and graphics with R. Manning. 2015
Bibliografía complementaria
  • Brian Everitt, Torsten Hothorn. An introduction to Applied Multivariate Analysis with R. Springer. 2011
  • Chris Chapman, Elea McDonnell Feit. R for Marketing Research and Analytics. Springer. 2015
  • James E. Monogan III. Political Analysis using R. Springer. 2015
  • Peter Dalgaard. Introductory Statistics with R, 2 Ed. Springer. 2008

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.