The course is aimed to present the most relevant aspects of plasma physics in ignition conditions in tokamak and stellarator fusion reactors, which in large part determine the design of future magnetic confinement fusion devices such as the ITER (International Thermonuclear Experimental Reactor) tokamak. This course is of interest for the training of those students interested in the field of magnetic and inertial confinement fusion. The basic plasma physics learnt in other courses of the program will have one of its most important fields of application in both, theoretical and experimental analysis, of the plasma behaviour in ignition conditions in a fusion reactor.
After the course, the student should have learnt the basic physics underlying the behaviour of a plasma in ignition conditions in a (magnetically) fusion reactor which, to a great extent, determine its design. This will allow the student to identify the elements which are essential for a fusion reactor to work and the regimes under which it should operate.