1. PLASMA. Debye shielding. Plasma frequency. Gas discharges. Fusion plasmas.
2. FLUIDS AND PLASMAS. Different levels of theory.
3. THE NEED OF ENERGY: The role of Nuclear Fusion. Magnetic confinement fusion and inertial confinement.
4. SINGLE PARTICLE MOTION. Electric and magnetic drifts. Adiabatic invariants. Trapped particles.
5. DESCRIPTION OF PLASMAS AS FLUIDS. Multi-fluid theory. Equation of state. One fluid theory. Diffusion. Collisions and conductivity. Magnetohydrodynamics equations. Equilibrium.
6. EQUILIBRIUM AND STABILITY. Hydromagnetic equilibrium. Linear stability. Ideal modes. Resistive modes. Plasma instabilities.
7. FUNDAMENTALS OF PLASMA TRANSPORT MECHANISMS. Classical, neoclassical and turbulent Transport.
8. WAVES IN PLASMAS. Electrostatic waves. Electromagnetic waves. Alfvén waves. Magnetosonic waves.
9. KINETIC THEORY. Distribution function. Boltzmann equation. Vlasov equation. Macroscopic variables. Landau damping. Wave kinetic theory.
10. FUNDAMENTALS OF PLASMA HEATING. Ohmic heating: Plasma resistivity. Neutral beam injection. Electron-ion cyclotron frequency heating.