Última actualización: 17/05/2024


Curso Académico: 2024/2025

Cálculo Diferencial
(18254)
Grado en Matemática Aplicada y Computación (Plan: 433 - Estudio: 362)


Coordinador/a: BRANDLE CERQUEIRA, CRISTINA

Departamento asignado a la asignatura: Departamento de Matemáticas

Tipo: Formación Básica
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:

Rama de Conocimiento: Ingeniería y Arquitectura



Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Ninguna
Objetivos
Estudio del Análisis Matemático fundamental de una variable, en particular de la Diferenciación.
Competencias y resultados del aprendizaje
CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado. CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. CG1. Que los estudiantes sean capaces de demostrar conocimiento y comprensión de conceptos de matemáticas, estadística y computación y aplicarlos a la resolución de problemas en ciencia e ingeniería con capacidad de análisis y síntesis. CG2. Que los estudiantes puedan formular en lenguaje matemático problemas que se planteen en los ámbitos de la ciencia, la ingeniería, la economía y otras ciencias sociales. CG4. Que los estudiantes demuestren que pueden analizar e interpretar las soluciones obtenidas con ayuda de la informática de los problemas asociados a modelos matemáticos del mundo real, discriminando los comportamientos más relevantes para cada aplicación. CG5. Que los estudiantes puedan sintetizar las conclusiones obtenidas del análisis de modelos matemáticos provenientes de aplicaciones del mundo real y comunicarlas de forma verbal y escrita en inglés, de manera clara, convincente y en un lenguaje accesible para un público general. CG6. Que los estudiantes sepan buscar y utilizar los recursos bibliográficos, en soporte físico o digital, necesarios para plantear y resolver matemática y computacionalmente problemas aplicados que surjan en entornos nuevos, poco conocidos o con información insuficiente. CE1. Que los estudiantes hayan demostrado que conocen y comprenden el lenguaje matemático y el razonamiento abstracto-riguroso y aplicarlos para enunciar y demostrar resultados precisos en diversas áreas de las matemáticas. CE2. Que los estudiantes hayan demostrado que comprenden los resultados fundamentales del análisis matemático real, complejo y funcional. RA1. Haber adquirido conocimientos avanzados y demostrado una comprensión de los aspectos teóricos y prácticos y de la metodología de trabajo en el campo de la matemática aplicada y computación con una profundidad que llegue hasta la vanguardia del  conocimiento. RA3. Tener la capacidad de recopilar e interpretar datos e informaciones sobre las que fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio. RA5. Saber comunicar a todo tipo de audiencias (especializadas o no) de manera clara y precisa, conocimientos, metodologías, ideas, problemas y soluciones en el ámbito de su campo de estudio.
Descripción de contenidos: Programa
1. FUNCIONES DE VARIABLE REAL 1.1 La recta real: conjuntos de números, propiedades, valores absolutos 1.2 Funciones y curvas elementales 1.3 Coordenadas polares 2. LÍMITES Y CONTINUIDAD 2.1 Límites de funciones. Propiedades y teoremas fundamentales 2.2 Continuidad de funciones. Teoremas fundamentales 2.3 Continuidad uniforme 3. DERIVADAS Y SUS APLICACIONES 3.1 Definición, propiedades, derivadas de funciones elementales 3.2 Significado de la derivada. Extremos 4. ESTUDIO LOCAL DE UNA FUNCIÓN 4.1 Representación gráfica 4.2 Polinomio de Taylor y sus aplicaciones 5. SUCESIONES Y SERIES DE NÚMEROS REALES 5.1 Sucesiones de números 5.2 Series de números positivos 5.3 Convergencia absoluta y condicional 6. SUCESIONES Y SERIES DE FUNCIONES 6.1 Sucesiones de funciones. Convergencia puntual y uniforme 6.2 Series de funciones. Convergencia puntual y uniforme 6.3 Series de Taylor
Actividades formativas, metodología a utilizar y régimen de tutorías
CLASES TEÓRICO-PRÁCTICAS [44 horas con un 100% de presencialidad, 1.76 ECTS] Conocimientos que deben adquirir los alumnos. Estos recibirán las notas de clase y tendrán textos básicos de referencia para facilitar el seguimiento de las clases y el desarrollo del trabajo posterior. Se resolverán ejercicios, se practicará con problemas por parte del alumno y se realizarán talleres y pruebas de evaluación para adquirir las capacidades necesarias. TUTORÍAS [4 horas con un 100% de presencialidad, 0.16 ECTS] Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE. [98 horas con 0% de presencialidad, 3.92 ECTS] EXAMEN FINAL. [4 horas con 100% de presencialidad, 0.16 ECTS] Se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. METODOLOGÍAS DOCENTES: CLASE DE TEORÍA. Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporcionan los materiales y la bibliografía para complementar el aprendizaje de los alumnos. PRÁCTICAS. Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor.
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40

Calendario de Evaluación Continua


Convocatoria extraordinaria: normativa
Bibliografía básica
  • Ron Larson, Bruce H. Edwards. Calculus: Early Transcendental Functions. Cengage Learning. 2015
  • Stewart, D. K. Clegg, S. Watson. Single Variable Calculus Early Transcendentals. Cengage Learning. 2020
Recursos electrónicosRecursos Electrónicos *
Bibliografía complementaria
  • B.P. DEMMIDOVICH. Problemas y ejercicios de Anlálisis Matemático. Paraninfo. 1980
  • D. PESTANA, J.M. RODRÍGUEZ, E. ROMERA, E. TOURÍS, V. ÁLVAREZ, A. PORTILLA. Curso práctico de Cálculo y Precálculo. Ariel (Planeta). 2019
  • G.L. BRADLEY, K.J. SMITH. Calculus . Pearson. 2012
  • S.L. SALAS, E. HILLE, G. ETGEN. Calculus de una y varias variables Volumen 1. Reverté. Traducción 8º edición, 2002
  • T.M. APÓSTOL. Mathematical Analysis. Addison-Wesley. 1974
(*) El acceso a algunos recursos electrónicos puede estar restringido a los miembros de la comunidad universitaria mediante su validación en campus global. Si esta fuera de la Universidad, establezca una VPN


El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.