BASICS COMPETENCES
CB6 Possess and understand knowledge that provides a basis or opportunity to be original in the development and / or application of ideas, often in a research context
CB7 That students know how to apply the knowledge acquired and their ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their area of study
CB8 That students are able to integrate knowledge and face the complexity of making judgments based on information that, being incomplete or limited, includes reflections on social and ethical responsibilities linked to the application of their knowledge and judgments
CB9 That students know how to communicate their conclusions and the knowledge and ultimate reasons that sustain them to specialized and non-specialized audiences in a clear and unambiguous way
GENERALS COMPETENCES
CG1 Knowledge and understanding of the theoretical foundations of both industrial processes and services, and communications.
CG2 Ability to model, identify basic requirements and analyze various processes.
CG6 Capacity to adapt to changes in requirements associated with new products, new specifications and environments.
SPECIFIC COMPETENCES
CE1 Ability to design automatic process systems (production machinery, transport and storage systems and quality control) and the interconnection between their different modules (industrial protocols)
CE2 Ability to integrate and program the different industrial process control systems both from a hardware and software point of view
CE3 Ability to program and simulate robot control systems at high, intermediate and low levels
CE4 Ability to implement and simulate a system of intelligent and flexible control of processes and systems
LEARNING RESULTS
As a result of the learning, the student will be able to:
- Know the basics of automation of industrial systems and services (non-industrial): structure, industrial communications and systems control.
- Know the basics of collaborative robotics: structure, sensorization, control, programming, paths / outputs, multi- robot systems, industrial applications and services.
- Analyze and synthesize systems using advanced control: identification methods, fuzzy control, control with reference model, learning systems, control with neural networks, predictive control, etc.
- Use of simulation tools of production systems with continuous and discrete parts: lay-out, warehouses, transport, specific machines, delays, etc.
- Design an automated system of low and medium complexity with its cyber-physical components.