Week 1: Potential Outcomes, RCT and Unconfoundedness . . . . . . . . . . . . . . LN(1-2), S1
Week 2: Machine Learning & Regression . . . . . . . . . . . . ISLR, Ch. 2, Ch. 3, LN(3-4), S2
Week 3: Regularization and Model Selection . . . . . . . . ISLR, Ch. 6, Ch. 8, LN(5-9), S3
Week 4: Regularization and Model Selection . . . . . . . . ISLR, Ch. 6, Ch. 8, LN(5-9), S3
Week 5: Double and Local Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LN(10-11), S4
Week 6: Application: Instrumental Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LN(11), S5
Week 7: Application: Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LN(11), S5
Week 8: Application: Inequality of Opportunity . . . . . . . . . . . . . . . . . . . . . . . . . .LN(11), S6