Checking date: 18/02/2025 09:45:22


Course: 2024/2025

Molecular and cellular neurophysiology II
(19771)
Bachelor in Neuroscience (Plan: 517 - Estudio: 389)


Coordinating teacher:

Department assigned to the subject:

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Learning Outcomes
K8: Knows the molecular and cellular basis of nerve impulse generation and transmission. Knows the different types of cells of the nervous system, and how their supracellular structures are established and organised. Knows the anatomical structure of the nervous system at both macroscopic and microscopic levels. S1: Uses a variety of techniques to find, manage, integrate and critically evaluate available information for the development of professional activities in Neuroscience, especially in the digital sphere S4: Uses their ability to analyse and synthesise, as well as to apply the principles of the scientific method in the work environment, in order to provide innovative responses to the needs and demands of society in their area. S5: Appropriately uses the scientific and technical vocabulary of the different subfields within Neuroscience. C1: Apply knowledge about the biological basis of Central Nervous System (CNS) disorders and their effects to the development of improved diagnostics and treatments. C2: Apply knowledge about the organisation, structure and function of the Central Nervous System (CNS) to contribute to the evolution and improvement of technologies and systems for computing, data handling and analysis. C5: Apply your neuroscience knowledge in a unifying and integrated fashion as part of a multidisciplinary team (pharmaceutical sector, health industry, diagnostic techniques, health information technologies, government agencies and regulatory bodies. C6: Apply the results of your comprehensive training to your everyday professional activities, combining Neuroscience knowledge with a solid foundation of ethical responsibility and respect for fundamental rights, diversity and democratic values. C7: Apply the scientific and technical principles you acquired during your undergraduate training, together with your own natural learning capabilities, to better adapt to novel opportunities arising from scientific and technological development.
Description of contents: programme
1. Introduction to Neurons and Neuronal Networks. Morphology of the neuron. Cytoskeleton and ion channels. 2. Cell types of the nervous system and their organisation. 3. Chemical and electrical synaptic connection. 4. Electrical potentials: naturally-generated and stimulion-induced. 5. Ionic mechanisms, polarisation/depolarisation. Fundamentals of electrochemistry. 6. Propagation of action potentials. 7. Neuromuscular synaptic transmission. 8. Mechanisms of neurotransmitter release. 9. Synaptic Transmission in the Central Nervous System. 10. Synaptic plasticity. 11. Formation, duration and elimination of synaptic connections. 12. Molecular mechanisms of neurotransmitter transport and secretion. 13. Types of neurotransmitters, their function and pathological manifestations. 14. Principles, development and applications of microelectrodes.
Learning activities and methodology
Classroom lectures. Face-to-face classes: reduced (workshops, seminars, case studies). Student individual work. Laboratory session. Final exam. Seminars and lectures supported by computer and audiovisual aids. Practical learning based on cases and problems, and exercise resolution. Individual and group or cooperative work with the option of oral or written presentation. Individual and group tutorials to resolve doubts and queries about the subject. Internships and directed laboratory activities.
Assessment System
  • % end-of-term-examination/test 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40




Extraordinary call: regulations

The course syllabus may change due academic events or other reasons.