Última actualización: 17/05/2022


Curso Académico: 2022/2023

Análisis Bayesiano de datos
(16502)
Titulación: Doble Grado Ciencia e Ingeniería de Datos - Ingeniería en Tecnologías de Telecomunicación (371)


Coordinador/a: AUSIN OLIVERA, MARIA CONCEPCION

Departamento asignado a la asignatura: Departamento de Estadística

Tipo: Obligatoria
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Probabilidad y análisis de datos Introducción a la modelización estadística Aprendizaje estadístico
Objetivos
CB2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio CB3: Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética CE2: Capacidad para identificar correctamente problemas de tipo predictivo correspondientes a unos objetivos y unos datos determinados y emplear los resultados básicos del análisis de regresión como fundamento básico de los métodos de predicción. CG1: Conocimientos y habilidades adecuados para analizar y sintetizar problemas básicos relacionados con la ingeniería y la ciencia de datos, resolverlos y comunicarlos de forma eficiente. CG4: Capacidad para la resolución de los problemas tecnológicos, informáticos, matemáticos y estadísticos que puedan plantearse en la ingeniería y ciencia de datos. CG5: Capacidad para resolver problemas formulados matemáticamente aplicados a diversas materias, empleando algoritmos numéricos y técnicas computacionales. CG6: Capacidad para sintetizar las conclusiones obtenidas de los análisis realizados y presentarlas de manera clara y convincente tanto por escrito como oralmente. RA1 Haber adquirido conocimientos avanzados y demostrado una comprensión de los aspectos teóricos y prácticos y de la metodología de trabajo en el campo de la ciencias e ingeniería de datos con una profundidad que llegue hasta la vanguardia del conocimiento RA2 Poder, mediante argumentos o procedimientos elaborados y sustentados por ellos mismos, aplicar sus conocimientos, la comprensión de estos y sus capacidades de resolución de problemas en ámbitos laborales complejos o profesionales y especializados que requieren el uso de ideas creativas e innovadoras RA3 Tener la capacidad de recopilar e interpretar datos e informaciones sobre las que fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio; RA4 Ser capaces de desenvolverse en situaciones complejas o que requieran el desarrollo de nuevas soluciones tanto en el ámbito académico como laboral o profesional dentro de su campo de estudio; RA5 Saber comunicar a todo tipo de audiencias (especializadas o no) de manera clara y precisa, conocimientos, metodologías, ideas, problemas y soluciones en el ámbito de su campo de estudio; RA6 Ser capaces de identificar sus propias necesidades formativas en su campo de estudio y entorno laboral o profesional y de organizar su propio aprendizaje con un alto grado de autonomía en todo tipo de contextos (estructurados o no).
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
0. Revisión de Probabilidad y variables aleatorias 1. Enfoque Frecuentista vs. Bayesiano 2. Distribuciones conjugadas 3. Modelos Gaussianos 4. Métodos de simulación para la estimación bayesiana 5. Modelos lineales y regresión 6. Modelos lineales generalizados 7. Agrupamiento Bayesiano 8. Regresión no lineal
Actividades formativas, metodología a utilizar y régimen de tutorías
AF1: CLASES TEÓRICO-PRÁCTICAS. En ellas se presentarán los conocimientos que deben adquirir los alumnos. Estos recibirán las notas de clase y tendrán textos básicos de referencia para facilitar el seguimiento de las clases y el desarrollo del trabajo posterior. Se resolverán ejercicios, prácticas problemas por parte del alumno y se realizarán talleres y prueba de evaluación para adquirir las capacidades necesarias. AF3: TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE. AF9: EXAMEN FINAL. En el que se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. MD1: CLASE TEORÍA. Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporcionan los materiales y la bibliografía para complementar el aprendizaje de los alumnos. MD2: PRÁCTICAS. Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo. MD3: TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor.
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40
Calendario de Evaluación Continua
Bibliografía básica
  • Bernardo, J.M.. Bioestadística una perspectiva Bayesiana. Vicens Viven. 1981
  • José Serrano Angulo. Iniciación a la estadística bayesiana. Editorial La Muralla, S.A.. 2003

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.