Última actualización: 29/05/2024


Curso Académico: 2024/2025

Instrumentación y Medida
(18322)
Doble Grado en Ingeniería Física e Ingeniería en Tecnologías Industriales (Plan: 455 - Estudio: 370)


Coordinador/a: MARTIN MATEOS, PEDRO

Departamento asignado a la asignatura: Departamento de Tecnología Electrónica

Tipo: Obligatoria
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Señales, Sistemas y Circuitos. Fundamentos de Ingeniería Electrónica
Objetivos
Proporcionar habilidades básicas para el desarrollo y uso de instrumentos y equipos electrónicos de medida, control y/o registro de fenómenos físicos. (1) teoría, metodología y práctica de la técnica de medida; (2) diseño, desarrollo y evaluación de sistemas y componentes de instrumentación y medida utilizados en la generación, adquisición, acondicionamiento y procesamiento de señales; (3) Práctica en proyectos de instrumentación electrónica
Competencias y resultados del aprendizaje
CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado. CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. CG1. Analizar y sintetizar problemas básicos relacionados con la física y la ingeniería, resolverlos y comunicarlos de forma eficiente. CG2. Aprender nuevos métodos y tecnologías a partir de conocimientos básicos científicos y técnicos, y tener versatilidad para adaptarse a nuevas situaciones. CG3. Resolver problemas con iniciativa, toma de decisiones, creatividad, y comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética, social y profesional de la actividad de ingeniero. Capacidad de liderazgo, innovación y espíritu emprendedor. CG5. Utilizar los conocimientos teóricos y prácticos adquiridos en la definición, planteamiento y resolución de problemas en el marco del ejercicio de su profesión. CG6. Desarrollar nuevos productos y servicios basados en el uso y la explotación de las nuevas tecnologías relacionadas con la ingeniería física. CE14. Especificar y utilizar instrumentación electrónica, sistemas de medida, sensores, técnicas y procedimientos experimentales habituales y avanzados en el ámbito de la física, la ingeniería y la biología, incluyendo microdispositivos electromecánicos y microfluídicos, y diseñar experimentos utilizando el método científico. CT1. Trabajar en equipos de carácter multidisciplinar e internacional así como organizar y planificar el trabajo tomando las decisiones correctas basadas en la información disponible, reuniendo e interpretando datos relevantes para emitir juicios y pensamiento crítico dentro del área de estudio. RA1. Haber adquirido conocimientos y demostrado una comprensión profunda de los principios básicos, tanto teóricos como prácticos, así como de la metodología de trabajo en los campos de las ciencias y la tecnología, con profundidad suficiente como para poder desenvolverse con soltura en los mismos. RA2. Poder, mediante argumentos, estrategias o procedimientos desarrollados por ellos mismos, aplicar sus conocimientos y capacidades a la resolución de problemas tecnológicos complejos que requieran del uso de ideas creativas e innovadoras. RA3. Tener la capacidad de buscar, recopilar e interpretar datos e informaciones relevantes sobre las que poder fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio. RA6. Ser capaces de identificar sus propias carencias y necesidades formativas en su campo de especialidad y entorno laboral-profesional y de planificar y organizar su propio aprendizaje con un alto grado de autonomía en cualquier situación.
Descripción de contenidos: Programa
1.-Conceptos fundamentales de Instrumentación y Medida. 1.1.- Caracterización metrológica de instrumentos y sistemas de medida. Precisión exactitud, resolución, sensibilidad. 1.2.- Fuentes de error en la medida y evaluación de la incertidumbre. Propagación de errores. 2.-Sensores. 2.1.- Concepto de sensor, caracterización. 2.2.- Tipos de sensores y clasificación. 2.3.- Ejemplos de sensores. 3.-Sistemas de Instrumentación Electrónica. 3.1.- Diagrama de bloques de un sistema de instrumentación electrónica. 3.2.- Señales en un sistema de instrumentación: señales continuas y muestreadas. 3.3.- Introducción a circuitos de acondicionamiento de señal y técnicas de modulación. 3.4.- Filtros. 3.5.- Ruido e interferencia en sistemas de instrumentación. 4.-Muestreo y adquisición se señales. 4.1.- Muestreo de señales analógicas. Teorema de Nyquist y aplicaciones. 4.2.- Conversores analógico-digitales: principios de funcionamiento, características principales y tipos. 4.3.- Conversores digital-analógicos 5.-Procesado digital de señales en instrumentación de medida.
Actividades formativas, metodología a utilizar y régimen de tutorías
AF1. CLASES TEÓRICO-PRÁCTICAS. Se presentarán los conocimientos que deben adquirir los alumnos. Recibirán las notasde clase y tendrán textos básicos de referencia para facilitar el seguimiento de las clases y el desarrollo del trabajo posterior.Se resolverán ejercicios, prácticas problemas por parte del alumno y se realizarán talleres y prueba de evaluación para adquirirlas capacidades necesarias. Para asignaturas de 6 ECTS se dedicarán 44 horas como norma general con un 100% de presencialidad.(exceptoaquellas que no tengan examen que dedicarán 48 horas) AF2. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. Para asignaturas de 6 créditos se dedicarán 4 horas con un 100% de presencialidad. AF3. TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE. Para asignaturas de 6 créditos se dedicarán 98 horas 0% presencialidad. AF8. TALLERES Y LABORATORIOS. Para asignaturas de 3 créditos se dedicarán 4 horas con un 100% de presencialidad. Para las asignaturas de 6 créditos se dedicarán 8 horas con un 100% de presencialidad. AF9. EXAMEN FINAL. Se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. Se dedicarán 4 horas con 100% presencialidad MD1. CLASE TEORÍA. Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporcionan los materiales y la bibliografía para complementar el aprendizaje de los alumnos. MD2. PRÁCTICAS. Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo. MD3. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. Para asignaturas de 6 créditos se dedicarán 4 horas con un 100% de presencialidad MD6. PRÁCTICAS DE LABORATORIO. Docencia aplicada/experimental a talleres y laboratorios bajo la supervisión de un tutor.
Sistema de evaluación
  • Peso porcentual del Examen Final 40
  • Peso porcentual del resto de la evaluación 60

Calendario de Evaluación Continua


Convocatoria extraordinaria: normativa
Bibliografía básica
  • Cataldo, Andrea, Giaquinto, Nicola, De Benedetto, Egidio, Masciullo, Antonio, Cannazza, Giuseppe, Lorenzo, Ilaria, Nicolazzo, Jacopo, Meo, Maria Teresa, De Monte, Alessando, & Parisi, Gianluca. . Basic Theory and Laboratory Experiments in Measurement and Instrumentation. Springer International Publishing AG. 2020
  • Northrop, R.B.. Introduction to Instrumentation and Measurements . CRC Press. 2014
Bibliografía complementaria
  • Domenique Placko (editor). . Fundamentals of Instrumentation and Measurement. Wiley. 2007
  • Peter H. Sydenham, Richard Thorn (Editors). Handbok of Measuring System Design. Volume 1 (Part 3), Volume 2 (Part 5 - section 3, Part 7, Part 8 ¿ sections 1,2), Volume 3 (Parts 9, 11, 12). Wiley. 2005

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.