Última actualización: 05/04/2022


Curso Académico: 2022/2023

Álgebra Lineal
(18295)
Titulación: Doble Grado en Ingeniería Física e Ingeniería en Tecnologías Industriales (370)


Coordinador/a: SANCHEZ SANCHEZ, ANGEL

Departamento asignado a la asignatura: Departamento de Matemáticas

Tipo: Formación Básica
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:

Rama de Conocimiento: Ingeniería y Arquitectura



Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Matemáticas de bachillerato científico tecnológico
Objetivos
CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía CG2. Aprender nuevos métodos y tecnologías a partir de conocimientos básicos científicos y técnicos, y tener versatilidad para adaptarse a nuevas situaciones. CG3. Resolver problemas con iniciativa, toma de decisiones, creatividad, y comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética, social y profesional de la actividad de ingeniero. Capacidad de liderazgo, innovación y espíritu emprendedor. CG4. Resolver problemas matemáticos, físicos, químicos, biológicos y tecnológicos que puedan plantearse en el marco de las aplicaciones de las tecnologías cuánticas, la nanotecnología, la biología, la micro- y nano-electrónica y la fotónica en diversos campos de la ingeniería. CG5. Utilizar los conocimientos teóricos y prácticos adquiridos en la definición, planteamiento y resolución de problemas en el marco del ejercicio de su profesión. CE1. Resolver problemas matemáticos que puedan plantearse en la ingeniería y aplicar conocimientos de álgebra lineal, cálculo diferencial e integral, métodos numéricos, algorítmica numérica, estadística, ecuaciones diferenciales y en derivadas parciales, variable compleja y transformadas. CE22. Diseñar, planificar y estimar los costes de un proyecto de ingeniería CT1. Trabajar en equipos de carácter multidisciplinar e internacional así como organizar y planificar el trabajo tomando las decisiones correctas basadas en la información disponible, reuniendo e interpretando datos relevantes para emitir juicios y pensamiento crítico dentro del área de estudio. RA1. Haber adquirido conocimientos y demostrado una comprensión profunda de los principios básicos, tanto teóricos como prácticos, así como de la metodología de trabajo en los campos de las ciencias y la tecnología, con profundidad suficiente como para poder desenvolverse con soltura en los mismos RA2. Poder, mediante argumentos, estrategias o procedimientos desarrollados por ellos mismos, aplicar sus conocimientos y capacidades a la resolución de problemas tecnológicos complejos que requieran del uso de ideas creativas e innovadoras; RA3. Tener la capacidad de buscar, recopilar e interpretar datos e informaciones relevantes sobre las que poder fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio; RA6. Ser capaces de identificar sus propias carencias y necesidades formativas en su campo de especialidad y entorno laboral/profesional y de planificar y organizar su propio aprendizaje con un alto grado de autonomía en cualquier situación.
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1. Números complejos · Conjuntos de números · Necesidad de los números complejos · Forma binomial de los números complejos · Representación gráfica · Operaciones · Conjugado, módulo y argumento · Forma polar de un número complejo · Raíces de números complejos · Exponencial de un número complejo · Resolución de ecuaciones 2. Sistemas de ecuaciones lineales · Introducción a los sistemas lineales · Interpretación geometrica · Existencia y unicidad · Notación matricial · Eliminación gaussiana · Equivalencia por filas, forma escalonada · Resolución de sistemas lineales · Sistemas homogéneos · Resolución simultánea · Sistemas con parámetros 3. El espacio vectorial Rn · Vectores · Subespacios vectoriales · Combinaciones lineales · Subespacio generado por un conjunto · Espacio de columnas y de filas · La ecuación matricial Ax=b · Espacio nulo · Revisitando los sistemas lineales · Independencia lineal · Base de un subespacio vectorial · Dimensión de un subespacio vectorial · Bases de Col A, Fil A y Nul A · Rango de una matriz · Sistemas de coordenadas · Introducción a las transformaciones lineales 4. Álgebra matricial · Operaciones con matrices · Transpuesta de una matriz · Transpuesta conjugada de una matriz · Inversa de una matriz · Matrices en bloques · Determinantes 5. Valores y vectores propios · Vectores y valores propios · La ecuación característica · Diagonalización · Cambio de base · Transformaciones lineales entre espacios vectoriales 6. Ortogonalidad · Producto escalar y módulo · Conjuntos ortogonales · Matrices unitarias · Complemento ortogonal · Proyecciones ortogonales · El proceso Gram-Schmidt · Problemas de mínimos cuadrados . Descomposición en valores singulares
Actividades formativas, metodología a utilizar y régimen de tutorías
AF1. CLASES TEÓRICO-PRÁCTICAS. Se presentarán los conocimientos que deben adquirir los alumnos. Recibirán las notasde clase y tendrán textos básicos de referencia para facilitar el seguimiento de las clases y el desarrollo del trabajo posterior.Se resolverán ejercicios, prácticas problemas por parte del alumno y se realizarán talleres y prueba de evaluación para adquirirlas capacidades necesarias. Para asignaturas de 6 ECTS se dedicarán 44 horas como norma general con un 100% de presencialidad.(exceptoaquellas que no tengan examen que dedicarán 48 horas) AF2. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. Para asignaturas de 6 créditos se dedicarán 4 horas con un 100% de presencialidad. AF3. TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE. Para asignaturas de 6 créditos se dedicarán 98 horas 0% presencialidad. AF9. EXAMEN FINAL. Se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. Se dedicarán 4 horas con 100% presencialidad MD1. CLASE TEORÍA. Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporcionan los materiales y la bibliografía para complementar el aprendizaje de los alumnos. MD2. PRÁCTICAS. Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo. MD3. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. Para asignaturas de 6 créditos se dedicarán 4 horas con un 100% de presencialidad
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40
Calendario de Evaluación Continua
Bibliografía básica
  • B. Noble and J.W. Daniel. Applied linear algebra. Prentice Hall. 1988
  • D.C. Lay, S.R. Lay and J.J MacDonald. Linear algebra and its applications. Pearson. 2016
  • G. Strang. Introduction to Linear Algebra. Cambridge. 2016
  • S.A. García and R.A. Horn. A second course in linear algebra. Cambridge. 2017
  • Sergei Treil. Linear Algebra Done Wrong. Edited by the author, available from https://www.math.brown.edu/~treil/papers/LADW/LADW.html. 2017 (last update)
Recursos electrónicosRecursos Electrónicos *
Bibliografía complementaria
  • C.D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM. 2000
  • R.A. Horn and C.R. Johnson. Matrix Analysis, 2nd edition. Cambridge. 2013
Recursos electrónicosRecursos Electrónicos *
(*) El acceso a algunos recursos electrónicos puede estar restringido a los miembros de la comunidad universitaria mediante su validación en campus global. Si esta fuera de la Universidad, establezca una VPN


El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.