Última actualización: 19/05/2022


Curso Académico: 2022/2023

Aprendizaje Estadístico
(16487)
Titulación: Grado en Ciencia e Ingeniería de Datos (350)


Coordinador/a: NOGALES MARTIN, FCO. JAVIER

Departamento asignado a la asignatura: Departamento de Estadística

Tipo: Obligatoria
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Algebra Lineal Probabilidad y Análisis de Datos Introducción a la modelización estadística
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1. Introducción al aprendizaje estadístico 2. Evaluación de métodos de aprendizaje 3. Aprendizaje no supervisado 3a. Clustering 3b. Reducción de dimensión 4. Aprendizaje probabilístico 4a. Clasificación estadística 4b. Regresión y predicción 5. Casos de estudio
Actividades formativas, metodología a utilizar y régimen de tutorías
Teoría (3 ECTS), Prácticas (3 ECTS). 50% clases magistrales con material de apoyo disponible en la Web. Otro 50% de prácticas computacionales.
Sistema de evaluación
  • Peso porcentual del Examen Final 50
  • Peso porcentual del resto de la evaluación 50
Calendario de Evaluación Continua
Bibliografía básica
  • BISHOP, C.M.. "PATTERN RECOGNITION AND MACHINE LEARNING". SPRINGER SCIENCE AND BUSINESS MEDIA. 2006
  • FRIEDMAN, J.; HASTIE, T.; TIBSHIRANI, R. . "THE ELEMENTS OF STATISTICAL LEARNIG". NEW YORK, SPRINGER SERIES IN STATISTICS. 2001
  • K. Murphy. Machine Learning, A Probabilistic Perspective. MIT Press. 2012

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.


Dirección web para más información: Aula Global