uc3m Universidad Carlos III de Madrid

Control Engineering I

Academic Year: (2023 / 2024) Review date: 27-04-2023

Department assigned to the subject: Systems Engineering and Automation Department

Coordinating teacher: MALFAZ VAZQUEZ, MARIA ANGELES

Type: Compulsory ECTS Credits: 6.0

Year: 2 Semester: 1

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Cálculo y Ampliación de matemáticas

OBJECTIVES

- Know automatic control and control engineering and its application to robotics.
- 2. Acquisition of the ability to design control systems.
- 3. Acquisition of knowledge and understanding of control methods.
- 4. Acquisition of knowledge and understanding of the main mathematical tools used for the identification and modeling of systems and the ability to apply them.
- 5. Understanding of the operation of closed loop control systems.
- 6. Acquisition of technical and laboratory skills.

DESCRIPTION OF CONTENTS: PROGRAMME

- 1. Introduction
- 2. Systems modeling
 - a. Laplace transform
 - b. Mathematical models
 - c. Linearization
 - d. Transfer function
 - i. Blocks diagram
 - ii. Mason's formula
- 3. Temporal analysis of systems.
 - a. Introduction to temporal analysis.
 - i. 1st order systems
 - ii. 2nd order systems
 - b. Reduced equivalent order systems.
 - c. Stability analysis: Routh-Hurwitz criterion
- 4. Introduction to control systems. Errors in feedback systems.
 - a. Control loop
 - b. Errors and type of systems
 - c. Sensitivity to disturbances
- 5. Temporal analysis of feedback systems. root locus.
 - a. Root locus
 - b. Inverse root locus
 - c. Frontiers of the roots
- 6. Time domain PID regulators.
 - a. PID control actions
 - b. Temporal design of PIDs using the root locus
 - c. Empirical PID tuning. Ziegler-Nichols methods
- 7. Frequency analysis of systems
 - a. Frequency response of a system
 - b. Bode plots
- 8. Frequency analysis of feedback systems to.
 - a. Nyquist criterion.
 - b. Relative stability: profit margin and phase margin.

9. Frequency design of PID regulators

LEARNING ACTIVITIES AND METHODOLOGY

- Master classes, doubt-solving classes in aggregate groups, individual tutorials and personal work by the student; oriented to the acquisition of theoretical knowledge (3 ECTS credits).
- Laboratory practices and problem classes in small groups, individual tutorials and personal work of the student; Oriented to the acquisition of practical skills related to the course program (3 ECTS credits).

ASSESSMENT SYSTEM

The continuous evaluation will consist of:

- Compulsory laboratory practices: 10%
- 2 midterm exams: 20% each

The final exam will be worth 50% and will have practical exercises and theoretical or theoretical-practical questions on any subject content. A minimum grade of 4 will be required in the final exam to pass the course.

% end-of-term-examination: 50
% of continuous assessment (assigments, laboratory, practicals...): 50

BASIC BIBLIOGRAPHY

- DiStefano et al Feedback and Control Systems, McGrawHill, 1990
- J. Wilkie, M. Johnson and R. Katebi Control engineering: an introductory course, Palgrave Macmillan, 2002
- NISE, N. S Control Systems Engineering, Wiley, 2011
- OGATA, K Modern Control Engineering, Prentice-Hall, 2010