uc3m Universidad Carlos III de Madrid

Metallic and Concrete Structures

Academic Year: (2023 / 2024) Review date: 21-09-2023

Department assigned to the subject: Continuum Mechanics and Structural Analysis Department

Coordinating teacher: ZAERA POLO, RAMON EULALIO

Type: Compulsory ECTS Credits: 6.0

Year: 1 Semester: 1

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Engineering degree with theoretical concepts in Structural Mechanics (see Master's degree entry requirements)

OBJECTIVES

- -Possess knowledge and understand concepts that provide a basis or opportunity to be original in the development and/or application of ideas, often in a research context.
- -That students know how to apply their acquired knowledge and problem-solving skills in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their area of study.
- -To know the aspects and techniques of analytical and computational methods to project, calculate and design structures and plants in the field of Industrial Construction.
- -Ability to formulate the necessary hypotheses to solve structural problems in industry.

DESCRIPTION OF CONTENTS: PROGRAMME

Steel Structures

- Calculation Methodologies and applicable regulations
- Design, calculation and analysis of metallic structural elements.
- Design of joints in metallic structures

Reinforced concrete structures

- Standards
- Limit State Method
- Anchorages and overlaps in reinforcements

LEARNING ACTIVITIES AND METHODOLOGY

Lecture classes: 21 h

Problem solving sessions: 21 h

Laboratory sessions: 2 sessions of 1.5h each

The student must also submit reports with the solutions of cases proposed by the professor.

Tutorial sessions (2h each week) on the established schedule

ASSESSMENT SYSTEM

Final assessment: 30%.

The final assessment consist of two reports (one on steel structures and the other on concrete structures) that will cover the knowledge acquired throughout the course.

Continuous assessment (70%)

- Short continuous assessment tests (14%) (two tests).
- Laboratory practice report (18%) (two laboratory sessions).
- Practical exercises (38%) (two exercises)

% end-of-term-examination: 30

% of continuous assessment (assigments, laboratory, practicals...): 70

BASIC BIBLIOGRAPHY

- AISC Steel Construction Manual, 15th Edition, AISC, 2017
- Code ACI 318-19 Building Code Requirements for Structural Concrete, American Concrete Institute, 2014
- Jack McCormac, Stephen Csernak Structural steel design 6th edition, Pearson, 2017
- Roger L. Brockenbrough Structural Steel Designer's Handbook 6th Edition, Mc Graw Hill, 2019
- William T.Segui Steel Design 6th Edition, CL Engineering, 2017

ADDITIONAL BIBLIOGRAPHY

- Edward S. Hoffman, David P. Gustafson Structural Design Guide to the AISC (LFRD), Spinger / Chapman&Hall,
- Jay Shen, Bulent Akbas Design Of Steel Structures, Mc Graw Hill, 2021
- Akbar R. Tamboli Handbook of Structural Steel Connection Design and Details (3rd ed), Mc Graw Hill, 2016
- Paul W. Richards Build With Steel: A Companion to the AISC Manual, CreateSpace, 2012