Department assigned to the subject: Mathematics Department
Coordinating teacher: TORRENTE ORIHUELA, ESTER AURORA
Type: Basic Core ECTS Credits : 6.0
Year : 1 Semester : 1
Branch of knowledge: Engineering and Architecture

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Basic knowledge on vectors and Euclidean space.
Basic knowledge on matrices and determinants.
Basic knowledge on systems of linear equations.
Basic trigonometry.

OBJECTIVES

1. Learning objectives:

- To understand the concept of algebraic structures.
- To know the field of complex numbers and their properties.
- To solve systems of linear equations and to interpret the results.
- To know and understand the notion of vector spaces.
- To understand the notion of bases and coordinates in a vector space, and the change-of-basis and change-ofcoordinate problems.
- To understand linear transformation and to represent a linear transformation by a matrix.
- To know and to understand the vector spaces associated to a given matrix.
- To compute the eigenvalues and eigenvectors of a matrix.
- To compute the QR decomposition of a matrix.
- To understand the least squares solution of an inconsistent system.
- To understand the concept of ordinary differential equation and to solve problems related to linear ordinary differential equations with constant coefficients.
- To know dynamic systems and to solve them by using eigenvalues and eigenvectors.

2. Specific skills:

- To raise the abstraction.
- To be able to solve real problems using typical linear algebra tools.

3. General skills:

- To improve the oral and written communication ability using the language and signs of mathematics properly.
- To be able to model a real situation by a linear transformation.
- To improve the ability to interpret a mathematical solution and define its limitations and reliability.
- To be able to use mathematical software.

DESCRIPTION OF CONTENTS: PROGRAMME

1. Complex numbers
2. Definitions
3. Forms of complex numbers
4. Properties and operations
5. Matrices
6. Operations with matrices
7. Transpose and inverse of a matrix
8. Determinants
9. Sets associated to a matrix
10. Systems of linear equations
11. Introduction and definitions
12. Geometric interpretation
13. Matrix methods to solve linear systems: Gauss and Gauss-Jordan. Application to the inverse of a square matrix
14. Homogeneous systems
15. Vector Spaces
16. Definitions
17. Operations and properties
18. Vector subspaces
19. Spanning sets
20. Linear dependence and independence
21. Bases and dimension. Coordinates. Change of bases. Change of coordinates.
22. Linear Transformations
23. Definition, properties and operations
24. Inverse of a linear transformation
25. Kernel and range of a linear transformation
26. Linear transformations and matrices
27. Representation of linear transformations from $I R^{\wedge} m$ to $I R^{\wedge} n$ with matrices
28. Representation of linear transformations between arbitrary vector spaces
29. Eigenvalues and eigenvectors of a square matrix
30. Definitions
31. Similarity and diagonalisation
32. Spectral theorem
33. Orthogonality
34. Definitions. Inner product. Length of a vector. Angle between two vectors. Orthogonal projection
35. Orthogonal and orthonormal bases
36. Orthogonal matrices and orthogonal linear transformations
37. Orthogonal subspaces and orthogonal complement
38. The Gram-Schmidt process and the QR factorisation
39. Least squares
40. Best approximation in the sense of least squares
41. Computation of the least squares solution
42. Applications to data fit and approximation of functions with polynomials
43. Introduction to Linear Ordinary Differential Equations with constant coefficients
9.1. Introduction to continuous dynamical systems and differential equations
9.2. Linear ordinary differential equations
9.3. Solution to systems of linear ordinary differential equations with constant coefficients
9.4. Introduction to stability of continuous dynamical systems
44. Review Topics
0.1. Introduction to Linear Systems
0.2 . Basics vectors and matrix

Complex numbers

1. Definitions
2. Forms of complex numbers
3. Properties and operations
4. Systems of linear equations
1.1. Introduction and definitions
1.2. Geometrical interpretation
1.3. Techniques for solving linear systems
1.4. Matrix methods: Gauss and Gauss-Jordan
1.5. Homogeneous linear system
5. Vector spaces
2.1. Definitions
2.2. Operations and properties
2.3. Vector subspaces
2.4. Linear combinations and Span
2.5. Linear independence
2.6. Bases and dimension of a subspace
2.7. Dot product. Length of a vector. Angle between two vectors
2.8. Orthogonal projection
6. Matrices
3.1. Operations with matrices
3.2. Transpose and inverse of a matrix
3.3. Determinant
3.4. Matrix subspaces
7. Linear transformations
4.1 Definitions, properties and operations
4.2. Inverse of a linear transformation
4.3. Image and kernel of a linear transformation
8. Bases
5.1. Coordinates
5.2. Change of basis
9. Orthogonality
6.1. Definitions
6.2. Orthogonal and orthonormal bases
6.3. Orthogonal matrix and linear transformations
6.4. Orthogonal projections and orthogonal complements
6.5. Gram-Schmidt process and QR factorization
10. Least squares
7.1. Better approximation.
7.2. Approximation using least squares
7.3. Methods and applications in data fitting and approximation of functions by polynomials
11. Eigenvalues and eigenvectors
8.1. Definitions
8.3. Similarity and Diagonalization
8.4. Spectral theorem
12. Introduction to Linear Ordinary Differential Equations with Constant Coefficients
9.1. Introduction to Continuous Dynamical Systems and Differential Equations
9.2. Linear Ordinary Differential Equations
9.3. Linear systems of differentiqal equations with constant coefficients
9.4. Introduction to the Stability of dynamical systems

LEARNING ACTIVITIES AND METHODOLOGY

Lecture sessions (3 credits) (PO: a). During these sessions we will cover the course topics with the aim of using theory to solve problems.

Practicals, working individually and in groups (3 credits) (PO: a) During these sessions we will solve exercises of different levels of difficulty.

ASSESSMENT SYSTEM

\% end-of-term-examination:
\% of continuous assessment (assigments, laboratory, practicals...): 40

We will follow a continuous-assessment system(40\%) plus a final exam (60\%):

- The continuous-assessment part consists in two written examinations contributing with weight 40% to the final mark.
- The final exam, contributing with weight 60% to the final mark, will be held at the end of the semester. (PO: a.)
- B. KOLMAN "Introductory linear algebra: an applied first course", Prentice Hall, 2006
- D. C. LAY "Linear algebra and its applications", Addison-Wesley - 4th ed, 2009
- G. STRANG "Linear Algebra and its applications", Thomson, 2007

ADDITIONAL BIBLIOGRAPHY

- O. BRETSCHER "Linear algebra with applications", Prentice Hall - Segunda edición - 2001.

