uc3m Universidad Carlos III de Madrid

Convertidores electrónicos de potencia

Curso Académico: (2023 / 2024) Fecha de revisión: 28-04-2023

Departamento asignado a la asignatura: Departamento de Tecnología Electrónica

Coordinador/a: ZUMEL VAQUERO, PABLO Tipo: Obligatoria Créditos ECTS: 3.0

Curso: 4 Cuatrimestre: 1

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Electrónica de potencia

OBJETIVOS

Al terminar con éxito esta asignatura, los estudiantes serán capaces de:

- 1. Tener una comprensión sistemática de los conceptos y aspectos clave de su rama en el ámbito de los convertidores electrónicos de potencia.
- 2. Tener un conocimiento adecuado de su rama de ingeniería que incluya algún conocimiento a la vanguardia de su campo en convertidores electrónicos de potencia.
- 3. Aplicar su conocimiento y comprensión de convertidores electrónicos de potencia para identificar, formular y resolver problemas de ingeniería utilizando métodos establecidos.
- 4. Aplicar sus conocimientos para desarrollar y llevar a cabo diseños que cumplan unos requisitos específicos
- 5. Tener comprensión de los diferentes métodos y la capacidad para utilizarlos.
- 6. Tener competencias técnicas y de laboratorio.
- 7. Seleccionar y utilizar equipos, herramientas y métodos adecuados
- 8. Combinar la teoría y la práctica para resolver problemas de convertidores electrónicos de potencia
- 9. Tener comprensión de métodos y técnicas aplicables en el ámbito de los convertidores electrónicos de potencia y sus limitaciones.

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

Análisis de dispositivos electrónicos de potencia. Pérdidas de potencia.

Fundamentos del diseño y selección de componentes eléctricos.

Protecciones básicas de sobrecorriente y sobretensión.

Cálculo de disipadores.

Análisis de topologías de convertidores.

Fundamentos de compatibilidad electromagnética.

ACTIVIDADES FORMATIVAS, METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

La metodología docente incluirá:

Clases magistrales, donde se presentarán a los alumnos los conocimientos básicos que deben adquirir. Se facilitará a los alumnos las notas de clase y tendrán textos básicos de referencia que les permita completar y profundizar en el temario de la asignatura.

Clases prácticas orientadas a la resolución de ejercicios y ejemplos en el contexto de un caso práctico real. Estas clases se complementarán con la resolución de ejercicios prácticos por parte del alumno.

Prácticas de Laboratorio

Tutorías colectivas.

SISTEMA DE EVALUACIÓN

EXAMEN FINAL. En el que se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. 60 % de la nota final.

EVALUACIÓN CONTINUA. En ella se valorarán el trabajo en las sesiones prácticas de laboratorio o en sala informática a lo largo del curso (40 % en total). La evaluación podrá realizarse sobre material entregado después de la sesión o durante la sesión.

Peso porcentual del Examen Final:	60
Peso porcentual del resto de la evaluación:	40

BIBLIOGRAFÍA BÁSICA

- BARRADO, A. LÁZARO Problemas de Electrónica de Potencia, Pearson Prentice Hall, 2007
- N. MOHAN, T.M. UNDELAND, W.P. ROBBINS Power electronics, converters, applications and design, John Wiley & Sons, 2003
- R.W. ERICKSON, D. MAKSIMOVIC. Fundamentals of Power Electronics. Second Edition, Kluwer Academic Publishers, 2002

BIBLIOGRAFÍA COMPLEMENTARIA

- A. I. PRESSMAN Switching Power Supply Design, McGraw-Hill, 1998
- CHRISTOPHE P. BASSO Switch-Mode Power Supplies Second Edition, Mc Graw Hill, 2014
- K. BILLINGS Switching power supply handbook, Mc Graw Hill, 2011
- W.G. HURLEY, W.H. WÖLFLE Transformers and Inductors for Power Electronics, Wiley, 2013