uc3m Universidad Carlos III de Madrid

Máquinas eléctricas e instalaciones

Curso Académico: (2023 / 2024) Fecha de revisión: 03-05-2023

Departamento asignado a la asignatura: Departamento de Ingeniería Eléctrica

Coordinador/a: MARTINEZ TARIFA, JUAN MANUEL

Tipo: Obligatoria Créditos ECTS: 6.0

Curso: 3 Cuatrimestre: 1

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Fundamentos de Ingeniería Eléctrica

OBJETIVOS

Al terminar con éxito esta asignatura, los estudiantes serán capaces de:

- 1. Un conocimiento adecuado de su rama de ingeniería que incluya algún conocimiento a la vanguardia de su campo en máquinas eléctricas e instalaciones.
- 2. Tener capacidad de aplicar su conocimiento y comprensión de máquinas eléctricas e instalaciones para identificar, formular y resolver problemas de ingeniería utilizando métodos establecidos.
- 3. Tener competencias técnicas y de laboratorio.
- 4. Tener capacidad de combinar la teoría y la práctica para resolver problemas de máquinas eléctricas e instalaciones.
- 5. Tener comprensión de métodos y técnicas aplicables en el ámbito de máquinas eléctricas e instalaciones y sus limitaciones.

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

- 1. Electromagnetismo aplicado a materiales ferromagnéticos.
- 1.1. Revisión leyes básicas de electromagnetismo.
- 1.2. Ley de Hopkinson y límites de aplicación. Inductancia de una bobina.
- 1.3. Saturación e histéresis de materiales ferromagnéticos.
- 1.4. Pérdidas por corrientes de Foucault. Disipación energética en una estructura ferromagnética.
- Transformadores.
- 2.1. Principio de funcionamiento del transformador ideal.
- 2.2. Aspectos constructivos.
- 2.3. Circuito equivalente del transformador real.
- 2.4. Caída de tensión y rendimiento.
- 2.5. Transformadores trifásicos. Ángulo horario.
- 2.6. Transformadores de medida y protección.
- 2.7. Autotransformadores.
- 3. Introducción a máquinas rotativas.
- 3.1. Principio de funcionamiento de máquinas rotativas
- 3.2. Campos magnéticos en el entrehierro.
- 3.3. Teorema de Ferraris.
- 3.4. Aspectos constructivos comunes a las máquinas de CA.
- 4. La Máquina síncrona.
- 4.1. Principio básico de funcionamiento del motor síncrono. Aplicaciones.
- 4.2. Aspectos constructivos.
- 5. La Máquina Asíncrona o de Inducción.
- 5.1. Principio básico de funcionamiento del motor asíncrono. Aplicaciones.
- 5.2. Circuito equivalente.
- 5.3. Característica par-velocidad. Arranque.
- 6. Instalaciones Eléctricas de baja tensión: Cables y conductores.
- 6.1. Introducción: distribución y suministro de energía
- 6.2. Cálculo de la sección de los conductores
- 7. Instalaciones de enlace y de interiores.
- 7.1. Esquema general y definiciones

- 7.2. Cálculo de las corrientes de cortocircuitos en las instalaciones
- 8. Protecciones en baja tensión.
- 8.1. Protección contra los choques eléctricos.
- Protección mediante interruptores automáticos y fusibles 8.2.
- 8.3. Esquemas de puesta a tierra
- 9. Proyectos de instalaciones eléctricas de baja tensión: normativa.

Prácticas:

- 1.- El transformador trifásico: conexionado, obtención del circuito equivalente mediante los ensayos de vacío y cortocircuito.
- 2.- El motor asíncrono: arranque y curva de corriente consumida. Factor de potencia, velocidad de giro y rendimiento frente a cada grado de carga.
- 3.- Medida de resistencia de Puesta a tierra: Conexión, cálculo del valor de la resistencia de puesta a tierra a partir de medidas.

ACTIVIDADES FORMATIVAS, METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

- Clases magistrales, clases de resolución de dudas en grupos reducidos, tutorías individuales (solicitud por email) orientados a la adquisición de conocimientos teóricos
- Prácticas de laboratorio y clases de problemas en grupos reducidos, tutorías individuales (solicitud por email) orientados a la adquisición de habilidades prácticas relacionadas con el programa de la asignatura

SISTEMA DE EVALUACIÓN

CRITERIOS DE EVALUACIÓN

Todas las evaluaciones se basarán en la resolución de problemas y cuestionarios teóricos. La asignatura se puede superar en la convocatoria ordinaria o bien en la convocatoria extraordinaria siguiendo los siguientes criterios.

CONVOCATORIA ORDINARIA

Parcial de máquinas eléctricas (Octubre) 20% Parcial de instalaciones eléctricas (Diciembre) 20%

Evaluación final de máquinas eléctricas (convocatoria ordinaria-Enero) 25%

Evaluación final de instalaciones eléctricas (convocatoria ordinaria-Enero) 25%

Laboratorio (obligatorio) 10%

Existe una nota mínima en ambos bloques en la convocatoria ordinaria (Enero) de 3/10

Se permite eliminar materia para el examen ordinario (Enero) si en un bloque se obtiene una calificación superior a 6/10 en la evaluación parcial. Si ambos bloques se superan por encima de 6/10 y la evaluación de prácticas es superior a 5/10 se puede superar la asignatura por parciales.

CONVOCATORIA EXTRAORDINARIA

Examen final de máquinas eléctricas (convocatoria extraordinaria-Junio) 45% Examen final de instalaciones eléctricas (convocatoria extraordinaria-Junio) 45%

Laboratorio (obligatorio) 10%

Se puede aplicar la misma fórmula de cálculo de convocatoria ordinaria si beneficia al alumno. Se permite eliminar materia para el examen extraordinario (junio) si en un bloque se obtiene una calificación superior a 6/10 en la evaluación parcial y/o en la final ordinaria (Enero). Hay una calificación mínima de 3/10 en ambos bloques para poder superar la asignatura.

En el caso de que no se hayan realizado las 3 sesiones de laboratorio obligatorias el alumno que quiera superar la asignatura en la convocatoria extraordinaria debe superar un examen específico de laboratorio que tendrá carácter eliminatorio. En el caso de superar la prueba la calificación tendrá un peso del 10%.

50 Peso porcentual del Examen Final: Peso porcentual del resto de la evaluación: 50

BIBLIOGRAFÍA BÁSICA

- A.J.Conejo, J.M. Arroyo, F.Milano, N.Aquacil, J.L.Polo, R.García Bertrand, J.Contreras, A.Clamagirand, L.López; ¿Instalaciones Eléctricas¿;, Mc. Graw-Hill..
- Antonio Colmenar y Juan Luis Hernández Instalaciones Eléctricas en Baja Tensión, Editorial Ra-Ma, 2007
- Fraile Mora J., "Máquinas eléctricas",, , Mc-Graw-Hill..
- Fraile Mora J., Fraile-Ardanuy J.; "Problemas de Máquinas eléctricas";, Mc-Graw-Hill..
- Guirado R., Asensi R., Jurado F., Carpio J.; ¿Tecnología Eléctrica¿;, Mc Graw Hill..
- José García Trasancos Instalaciones Eléctricas en Media y Baja Tensión, Paraninfo, 2016
- Sanz Feito J.; "Máquinas eléctricas";, Prentice Hall..

BIBLIOGRAFÍA COMPLEMENTARIA

- Chapman, Stephen C.; "Máquinas Eléctricas";, Mc.Graw Hill..
- Fraile Mora, J; ¿Electromagnetismo y circuitos eléctricos ¿;, Servicio de publicaciones E.T.S. de Ingenieros de Caminos de Madrid..
- Sanjurjo Navarro, R.; "Máquinas eléctricas",, Mc.Graw Hill..