uc3m Universidad Carlos III de Madrid

Sistemas Electrónicos

Curso Académico: (2023 / 2024) Fecha de revisión: 28-04-2023

Departamento asignado a la asignatura: Departamento de Tecnología Electrónica

Coordinador/a: PATON ALVAREZ, SUSANA Tipo: Obligatoria Créditos ECTS : 6.0

Curso: 3 Cuatrimestre: 1

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Sistemas Lineales, Componentes y Circuitos Electrónicos

OBJETIVOS

El objetivo de este curso es que el estudiante adquiera un conocimiento sólido en una serie de técnicas horizontales esenciales en los sistemas electrónicos. En el desarrollo de la asignatura se pondrá especial énfasis en la aplicación de dichas técnicas sobre equipos y subsistemas específicos de telecomunicación, tanto a nivel de procesamiento de señal como de alimentación de los equipos. Para lograr este objetivo, el alumno adquirirá las siguientes capacidades:

- Comprender el funcionamiento de circuitos electrónicos con realimentación negativa y su respuesta en frecuencia
- Analizar y evaluar los circuitos osciladores más comunes
- Comprender el funcionamiento de los amplificadores operacionales reales y sus aplicaciones tanto lineales como no lineales
- Comprender el funcionamiento de los subsistemas electrónicos más utilizados en procesamiento de señal y comunicaciones como son temporizadores, VCOs y los PLLs
- Conocer el funcionamiento y aplicaciones de las fuentes de alimentación y equipos de energía para sistemas de telecomunicación

En cuanto a las capacidades generales o destrezas, se trabajarán a lo largo de la asignatura las siguientes:

- Capacidad de trabajar en equipo de forma cooperativa, sabiendo adaptar los requisitos y condiciones de trabajo del subsistema desarrollado por ellos para que funcione adecuadamente dentro de un sistema global no solo electrónico. Esta faceta se trabajará mediante el desarrollo de ejemplos y casos prácticos.
- Habilidad para identificar, formular y resolver problemas propios de la ingeniería
- Habilidad para utilizar técnicas y herramientas necesarias en la ingeniería moderna que permitan reducir tiempos de desarrollo de los equipos

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

BLOQUE 1

- Circuitos Electrónicos Realimentados
 - o Conceptos básicos de la teoría de realimentación en electrónica
 - o Topologías de circuitos electrónicos realimentados
 - o Cálculo de la ganancia, impedancia de entrada e impedancia de salida en un circuito realimentado
 - o Concepción del método práctico o aproximado para la resolución de circuitos con realimentación negativa.

Ejemplo

- o Configuraciones básicas de redes beta según las distintas topologías
- o Estudio de circuitos realimentados para cada una de las diferentes topologías
- Análisis en Frecuencia de Circuitos Realimentados
 - o Análisis en Frecuencia de un amplificador realimentado
 - o Estudio de la estabilidad de un amplificador realimentado mediante el diagrama de Bode
 - o Técnicas de compensación
- Osciladores
 - o Configuración general de un oscilador. Condición de arranque y de mantenimiento de un oscilador
 - o Osciladores RC

- o Limitadores de amplitud
- o Osciladores LC: Colpitts, Hartley y Clapp. Osciladotes de Cristal (Xtal)

BLOQUE 2

- Amplificadores Operacionales Reales y Aplicaciones
 - o Características de un amplificador operacional real
 - o Aplicaciones lineales. Filtros activos como aplicación lineal
 - o Aplicaciones no lineales
- Subsistemas Electrónicos para Procesamiento de Señal y Comunicaciones: Temporizadores Integrados y Aplicaciones. PLLs y Aplicaciones
 - o El Temporizador Integrado 555: Modo monoestable, astable y VCO. Ejemplos de aplicación
 - o PLL:

Diagrama de bloques y principio de funcionamiento Componentes: detectores de fase, filtros, VCOs

Función de transferencia y tipos PLL de 1er y 2ª orden. Ejemplos Aplicaciones de los PLLs

BLOQUE 3

- Reguladores de tensión lineales
 - o Realimentación serie-paralelo en el regulador de tensión lineal
 - o Diseño básico de un regulador de tensión lineal
 - o Medidas de potencia y rendimiento
- Reguladores de Tensión Conmutados
 - o Fundamentos de convertidores CC/CC conmutados
 - o Operación y diseño básic del convertidor reductor
 - o Realimentación negativa en un convertidor conmutado
 - o Convertidores CC/CC y CA/CC para telecomunicaciones. SAIs
- Convertidores de Energía
 - o Análisis básico de un generador fotovoltaico

ACTIVIDADES FORMATIVAS, METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

La metodología docente incluirá:

- 14 Clases magistrales, donde se presentarán a los alumnos los conocimientos básicos que deben adquirir. Se facilitará a los alumnos las notas de clase y tendrán textos básicos de referencia que les permita completar y profundizar en el temario de la asignatura.
- 11 Clases prácticas orientadas a la resolución de ejercicios y ejemplos en el contexto de un caso práctico real. Estas clases se complementarán con la resolución de ejercicios prácticos por parte del alumno que en algunos casos pueden requerir el uso de programas de simulación por ordenador.
- 4 Prácticas de Laboratorio, donde el alumno diseña, modela y caracteriza sistemas electrónicos del ámbito de las comunicaciones de aplicación real.

Tutorías colectivas. Al menos, se realizará una tutoría colectiva en la semana de recuperación en el horario de grupo reducido como repaso y preparación del examen final. (Ver detalle en el cronograma)

SISTEMA DE EVALUACIÓN

Se llevará a cabo un sistema de evaluación continua en el que se valorará:

1. Prácticas de Laboratorio obligatorias (20%)

Se evaluarán los conocimientos adquiridos por el alumno mediante la caracterización en el laboratorio de algunos de los circuitos electrónicos analizados previamente en las clases magistrales y de problemas. Las prácticas de laboratorio se realizarán en grupo y en el transcurso de las mismas se desarrollará un sistema electrónico completo que se evaluará en un examen de laboratorio.

2. Resolución de problemas y/o cuestiones tipo test para cada bloque temático (20%)

Por cada bloque temático se propondrán problemas y/o cuestionaros tipo test a desarrollar de manera individual.

3. Examen final obligatorio (60%)

Además, al final del curso se realizará un examen final en el que se evaluarán los conocimientos globales adquiridos por el alumno. Se exigirá una nota mínima (4,5 puntos sobre 10) para que sea de aplicación el procedimiento de la evaluación continua.

Peso porcentual del Examen Final:	60
Peso porcentual del resto de la evaluación:	40

BIBLIOGRAFÍA BÁSICA

- A. S. SEDRA, K.C. SMITH, T. C. CARUSONE, , V. GALDET Microelectronic Circuits, Oxford University Press, 8th edition
- D. JOHNS, K. MARTIN, T. C. CARUSONE Analog Integrated Circuitt Design, John Wiley and Sons, 2nd edition
- M. H. RASHID Microelectronic Circuits: Analysis and Design, CL-Engineering, 2010
- N. MOHAN First Course on Power Electronics, MN Power Electronics (MNPERE), 2009