Fundamentos de ingeniería electrónica

Curso Académico: (2023 / 2024) Fecha de revisión: 12-02-2024

Departamento asignado a la asignatura: Departamento de Tecnología Electrónica

Coordinador/a: RUIZ LLATA, MARTA Tipo: Obligatoria Créditos ECTS : 6.0

Curso: 3 Cuatrimestre: 1

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Física II, Fundamentos de estado sólido para ingeniería, Electromagnetismo y Óptica, Señales, sistemas y circuitos

COMPETENCIAS Y RESULTADOS DEL APRENDIZAJE

- CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
- CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
- CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
- CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
- CG1. Analizar y sintetizar problemas básicos relacionados con la física y la ingeniería, resolverlos y comunicarlos de forma eficiente.
- CG2. Aprender nuevos métodos y tecnologías a partir de conocimientos básicos científicos y técnicos, y tener versatilidad para adaptarse a nuevas situaciones.
- CG3. Resolver problemas con iniciativa, toma de decisiones, creatividad, y comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética, social y profesional de la actividad de ingeniero. Capacidad de liderazgo, innovación y espíritu emprendedor.
- CG5. Utilizar los conocimientos teóricos y prácticos adquiridos en la definición, planteamiento y resolución de problemas en el marco del ejercicio de su profesión.
- CG6. Desarrollar nuevos productos y servicios basados en el uso y la explotación de las nuevas tecnologías relacionadas con la ingeniería física.
- CE13. Comprender y manejar los principios físicos de estado sólido de relevancia para la ingeniería y, en concreto, de los semiconductores para su aplicación en componentes electrónicos y fotónicos, así como los fundamentos y aplicaciones de la electrónica analógica y digital y de microprocesadores.
- CT1. Trabajar en equipos de carácter multidisciplinar e internacional así como organizar y planificar el trabajo tomando las decisiones correctas basadas en la información disponible, reuniendo e interpretando datos relevantes para emitir juicios y pensamiento crítico dentro del área de estudio.
- RA1. Haber adquirido conocimientos y demostrado una comprensión profunda de los principios básicos, tanto teóricos como prácticos, así como de la metodología de trabajo en los campos de las ciencias y la tecnología, con profundidad suficiente como para poder desenvolverse con soltura en los mismos.
- RA2. Poder, mediante argumentos, estrategias o procedimientos desarrollados por ellos mismos, aplicar sus conocimientos y capacidades a la resolución de problemas tecnológicos complejos que requieran del uso de ideas creativas e innovadoras.
- RA3. Tener la capacidad de buscar, recopilar e interpretar datos e informaciones relevantes sobre las que poder fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio.

RA6. Ser capaces de identificar sus propias carencias y necesidades formativas en su campo de especialidad y entorno laboral-profesional y de planificar y organizar su propio aprendizaje con un alto grado de autonomía en cualquier situación.

OBJETIVOS

Conocer los fundamentos de ingeniería electrónica, tanto analógica como digital.

Conocer los fundamentos de los componentes activos en electrónica analógica y su utilización para amplificación y otras aplicaciones.

Conocer los fundamentos del filtrado electrónico de señales.

Conocer los fundamentos del diseño de fuentes de alimentación.

Conocer los fundamentos de los sistemas digitales y los microcontroladores

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

Introducción.

- o Introducción a la ingeniería electrónica.
- o Revisión de conceptos fundamentales (señales, sistemas, circuitos y componentes pasivos).

Fundamentos de Electrónica Analógica:

Introducción a los dispositivos basados en semiconductor.

- o Introducción al uso de semiconductores en electrónica.
- El diodo.
- Circuitos con diodos.

Componentes activos. Amplificación.

- o Introducción a la amplificación y la realimentación.
- o El transistor bipolar. Amplificación.
- o El transistor MOSFET. Amplificación y aplicaciones.
- o El amplificador operacional. Comparación y amplificación.

Filtrado de señales.

- o Revisión de respuesta en frecuencias.
- o Diseño e implementación de filtros pasivos y activos.
- o El filtrado en instrumentación electrónica.

Fuentes de alimentación.

- o Introducción al diseño de fuentes de alimentación.
- o Topologías básicas.

Fundamentos de Electrónica Digital:

Fundamentos de Sistemas Digitales:

- o Dígitos binarios, niveles lógicos y cronogramas
- o Funciones lógicas combinacionales y secuenciales. Funciones básicas aritméticas y lógicas.

Funciones de almacenamiento. Funciones de conteo

Introducción a los microcontroladores:

- Arquitectura del microprocesador.
- o Arquitectura del sistema. Interrupciones
- o GPIOs.
- o Temporizadores.
- o Introducción a la programación de microcontroladores

ACTIVIDADES FORMATIVAS, METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

AF1. CLASES TEÓRICO-PRÁCTICAS.

AF3. TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE.

AF8. TALLERES Y LABORATORIOS.

AF9. EXAMEN FINAL.

MD1. CLASE TEORÍA.

MD2. PRÁCTICAS.

MD6. PRÁCTICAS DE LABORATORIO.

SISTEMA DE EVALUACIÓN

Peso porcentual del Examen Final: 40 Peso porcentual del resto de la evaluación: 60

EXAMEN FINAL. En el que se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. El porcentaje de valoración será del 40%. El examen estará dividido en dos partes, electrónica analógica y electrónica digital, siendo la nota mínima requerida en cada parte 3.5 puntos.

EVALUACIÓN CONTINUA. En ella se valorarán las prácticas de laboratorio y se incluirán dos exámenes parciales. El porcentaje de valoración de cada parte será el siguiente:

- 15% -Nota en el examen parcial 1
- Nota en el examen parcial 2 15% -
- 15% -Media de las prácticas de laboratorio
- 15% -Ejercicios entregables de electrónica digital

BIBLIOGRAFÍA BÁSICA

- Thomas L Floyd Fundamentos de Sistemas Digitales, Pearson.
- Thomas L. Floyd Dispositivos electrónicos, Prentice Hall.
- Thomas L. Floyd Principios de Circuitos Eléctricos, Prentice Hall.