uc3m Universidad Carlos III de Madrid

Variable Compleja

Curso Académico: (2023 / 2024) Fecha de revisión: 12-02-2024

Departamento asignado a la asignatura: Departamento de Matemáticas

Coordinador/a: CUESTA RUIZ, JOSE ANTONIO

Tipo: Obligatoria Créditos ECTS: 6.0

Curso: 2 Cuatrimestre: 2

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Algebra Lineal (Curso : 1 Cuatrimestre : 1), Cálculo Diferencial (Curso : 1 Cuatrimestre : 1), Cálculo Integral (Curso : 1 Cuatrimestre : 2), Cálculo Vectorial (Curso : 1 Cuatrimestre : 2).

COMPETENCIAS Y RESULTADOS DEL APRENDIZAJE

CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.

CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

CG1. Que los estudiantes sean capaces de demostrar conocimiento y comprensión de conceptos de matemáticas, estadística y computación y aplicarlos a la resolución de problemas en ciencia e ingeniería con capacidad de análisis y síntesis.

CG2. Que los estudiantes puedan formular en lenguaje matemático problemas que se planteen en los ámbitos de la ciencia, la ingeniería, la economía y otras ciencias sociales.

CG4. Que los estudiantes demuestren que pueden analizar e interpretar las soluciones obtenidas con ayuda de la informática de los problemas asociados a modelos matemáticos del mundo real, discriminando los comportamientos más relevantes para cada aplicación.

CG5. Que los estudiantes puedan sintetizar las conclusiones obtenidas del análisis de modelos matemáticos provenientes de aplicaciones del mundo real y comunicarlas de forma verbal y escrita en inglés, de manera clara, convincente y en un lenguaje accesible para un público general.

CG6. Que los estudiantes sepan buscar y utilizar los recursos bibliográficos, en soporte físico o digital, necesarios para plantear y resolver matemática y computacionalmente problemas aplicados que surjan en entornos nuevos, poco conocidos o con información insuficiente.

CE1. Que los estudiantes hayan demostrado que conocen y comprenden el lenguaje matemático y el razonamiento abstracto-riguroso y aplicarlos para enunciar y demostrar resultados precisos en diversas áreas de las matemáticas. CE2. Que los estudiantes hayan demostrado que comprenden los resultados fundamentales del análisis matemático real, complejo y funcional.

RA1. Haber adquirido conocimientos avanzados y demostrado una comprensión de los aspectos teóricos y prácticos y de la metodología de trabajo en el campo de la matemática aplicada y computación con una profundidad que llegue hasta la vanguardia del conocimiento.

RA2. Poder, mediante argumentos o procedimientos elaborados y sustentados por ellos mismos, aplicar sus conocimientos, la comprensión de estos y sus capacidades de resolución de problemas en ámbitos laborales complejos o profesionales y especializados que requieren el uso de ideas creativas e innovadoras.

RA3. Tener la capacidad de recopilar e interpretar datos e informaciones sobre las que fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social,

científica o ética en el ámbito de su campo de estudio.

RA5. Saber comunicar a todo tipo de audiencias (especializadas o no) de manera clara y precisa, conocimientos, metodologías, ideas, problemas y soluciones en el ámbito de su campo de estudio.

RA6. Ser capaces de identificar sus propias necesidades formativas en su campo de estudio y entorno laboral o profesional y de organizar su propio aprendizaje con un alto grado de autonomía en todo tipo de contextos (estructurados o no).

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

- 1. Funciones holomorfas
- 2. Funciones analíticas: series de potencias y funciones elementales
- 3. Integración compleja: fórmula integral de Cauchy y aplicaciones
- 4. Teorema de los residuos y aplicaciones: cálculo de integrales y series
- 5. Aplicaciones conformes

ACTIVIDADES FORMATIVAS. METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

ACTIVIDADES FORMATIVAS. METODOLOGÍA A USAR Y REGIMEN DE TUTORIAS

CLASES TEÓRICO-PRÁCTICAS [44 horas con un 100% de presencialidad, 1.76 ECTS] Conocimientos que deben adquirir los alumnos. Estos recibirán las notas de clase y tendrán textos básicos de referencia para facilitar el seguimiento de las clases y el desarrollo del trabajo posterior. Se resolverán ejercicios, prácticas problemas por parte del alumno y se realizarán talleres y prueba de evaluación para adquirirlas capacidades necesarias.

TUTORÍAS [4 horas con un 100% de presencialidad, 0.16 ECTS] Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor.

TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE. [98 horas con 0% de presencialidad, 3.92 ECTS]

EXAMEN FINAL. [4 horas con 100% de presencialidad, 0.16 ECTS] Se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso.

METODOLOGÍAS DOCENTES

CLASE TEORÍA. Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporcionan los materiales y la bibliografía para complementar el aprendizaje de los alumnos.

PRÁCTICAS. Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo.

TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor.

SISTEMA DE EVALUACIÓN

SISTEMAS DE EVALUACIÓN

SE1 - EXAMEN FINAL. [50%]

En el que se valoraránde forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso.

SE2 - EVALUACIÓN CONTINUA. [50%]

En ella se valorarán los trabajos, presentaciones, actuación en debates, exposiciones en clase, ejercicios, prácticas y trabajo en los talleres a lo largo del curso.

Peso porcentual del Examen Final:	50
Peso porcentual del resto de la evaluación:	50

- CHURCHILL, R.V. and BROWN, J.W. Complex variables and applications, McGraw Hill, 1992
- CHURCHILL, R.V. and BROWN, J.W. Complex variables and applications: Selected Solutions to Exercises, McGraw Hill, 1992
- LARS V. AHLFORS Complex Analysis, McGraw Hill, 1979
- LEVINSON, N. and REDHEFFER, R. M. Complex Variables, Holden-Day, 1970
- SPIEGEL, M.R. Schaum's Outlines: Complex Variables, McGraw Hill, 1964

BIBLIOGRAFÍA COMPLEMENTARIA

- PESTANA, D., RODRÍGUEZ, J.M. and MARCELLÁN, F. Curso práctico de variable compleja y teoría de transformadas, Pearson, 2014