uc3m Universidad Carlos III de Madrid

Aerospace Propulsion I

Review date: 17-07-2023 Academic Year: (2023 / 2024)

Department assigned to the subject: Aerospace Engineering Department

Coordinating teacher: IANIRO, ANDREA Type: Electives ECTS Credits: 6.0

Year: 3 Semester: 1

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Fluid Mechanics I Fluid Mechanics II Thermal Engineering

Introduction to structural analysis

We strongly advise you not to take this course if you have not passed Fluid Mechanics II and Thermal Engineering

OBJECTIVES

Adequate knowledge, with application to the engineering of: the methods of calculation and development of facilities of the propulsive systems; the regulation and control of propulsive systems installations; the handling of experimental techniques, equipment and measuring instruments of the discipline; the fuels and lubricants used in aviation and automotive engines; the numerical simulation of the most significant physical-mathematical processes; the maintenance and certification systems of aerospace engines.

Applied knowledge of: internal aerodynamics; propulsion theory; performances of airplanes and jet aircrafts; propulsion system engineering; Mechanics and thermodynamics.

Applied knowledge of: theory of propulsion; jet engine performance; propulsion system engineering.

DESCRIPTION OF CONTENTS: PROGRAMME

1 Introduction to aerospace propulsion: Thrust generation and jet propulsion Effect of external expansion on thrust Global performance parameters Range of aircraft Efficiencies

2 Aircraft Engine Modeling: the Turbojet:

Thrust equation

Shaft balance for the turbojet

Fuel consumption

Design parameters

Effect of mass flow on thrust

Note on Ramjets

Propulsive efficiency

Thermal and overall efficiencies

3 Introduction to Component Matching and Off-Design Operation

Discussion on nozzle choking

Component matching

Effects of Mach number

Examples

Compressor-turbine matching. Gas generators

4 Turbofan Engines

Ideal turbofan model

Shaft balance

Velocity matching condition

Optimal compression ratio

5 Inlets and Nozzles Inlets or Diffusers Subsonic Inlets Supersonic Inlets Exhaust nozzles

6 Principles of Compressors and Fans

Euler equation Velocity triangles

Isentropic efficiency and compressor map . . .

7 Compressor Blading, design and multi-staging Diffusion factor. Stall and surge Compressor blading and radial variations Multi-staging and flow area variation Mach Number Effects The Polytropic Efficiency Starting and Low-Speed Operation

8 Turbines. Stage characteristics. Degree of reaction:

Euler¿s Equation Degree of Reaction Radial variations Rotating blade temperature

9 Turbine solidity. Mass flow limits. Internal cooling: Solidity and aerodynamic loading Mass flow per unit of annulus area and blade stress Turbine cooling. General trends and systems. Internal cooling.

10 Film cooling. Thermal stresses. Impingement:

Film cooling Impingement cooling Thermal stresses How to design cooled blades

11 Combustion: Combustors and Pollutants

Combustion process Combustor chambers Combustor sizing Afterburners

Pollutants: regulations

Mechanisms for pollutant formation Upper-Atmospheric Emissions

12 Introduction to engine noise and aeroacoustics:

Noise propagation Acoustic energy density and power flux Noise sources and noise modeling Jet Noise Turbomachinery noise

13 Engine rotating structures

Blade loads

Centrifugal stresses and disc design

14 Fundamentals of rotordynamics:

Bearings and engine arrangements

Lumped mass model

Critical speeds

Forces on bearings

Comments on blade vibrations

LEARNING ACTIVITIES AND METHODOLOGY

Theory sessions.

Problem sessions working individually and in groups.

Computer sessions.

Lab-sessions.

ASSESSMENT SYSTEM

In order to pass the subject, two requirements need to be met:

- 1) To have a MINIMUM mark of 4.0/10 in the end-of-term exam;
- 2) To have a MINIMUM overall mark of 5.0/10 (weighing 60% the end-of-term exam mark and 40% the mark of the continuous evaluation).

The continuous evaluation includes 2 partial exams (each one corresponding to 10% of the final mark) and 4 reports of laboratory practices (each one corresponding to 5% of the final mark).

% end-of-term-examination: 60 % of continuous assessment (assignments, laboratory, practicals...): 40

BASIC BIBLIOGRAPHY

- J.D. Mattingly Elements of Propulsion: Gas Turbines and Rockets, AIAA, 2006
- J.L. Kerrebrock Aircraft Engines and Gas Turbines, MIT Press, 1992

ADDITIONAL BIBLIOGRAPHY

- N. Cumpsty Jet Propulsion, Cambridge Univ. Press, 2003
- Saeed Farokhi Aircraft Propulsion, Wiley, 2014