uc3m Universidad Carlos III de Madrid

Signals and Systems

Academic Year: (2023 / 2024) Review date: 28-04-2023

Department assigned to the subject: Signal and Communications Theory Department

Coordinating teacher: MIGUEZ ARENAS, JOAQUIN

Type: Compulsory ECTS Credits: 6.0

Year: 2 Semester: 1

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Calculus I Calculus II

OBJECTIVES

The goal of the course is to provide the students with the theoretical and methodological knowledge necessary to work with continuous and discrete-time signals and LTI (linear and time-invariant) systems in the time and frequency domain.

DESCRIPTION OF CONTENTS: PROGRAMME

This course introduces the basic tools of Fourier analysis of signals (both in continuous and discrete time), the analysis of linear systems and the representation of signals from their samples.

INTRODUCTION:

- Signals: properties and classification.
- Systems: properties and classification.
- Linear and time-invariant systems (LTI).

PART 1: Fourier series (FS) representation of periodic signals

- Response of LTI systems to complex exponentials.
- FS representation of continuous-time signals. Properties.
- FS representation of discrete-time signals. Properties.

PART 2: Fourier transform (FT)

- FT of signals in continuous time. Properties and examples.
- Linear systems characterised by ordinary differential equations.
- FT of discrete time signals. Properties and examples.
- Linear systems characterised by difference equations.

PART 3: Representation of signals from their samples

- The sampling theorem.
- Interpolation and decimation.
- Discrete-time processing of continuous-time signals.
- The discrete Fourier transform.

PART 4: Z Transform (ZT)

- The ZT.
- Region of convergence.
- Properties.
- Analysis of LTI systems.

LEARNING ACTIVITIES AND METHODOLOGY

Office hours will be held online during academic year 2020-21.

ASSESSMENT SYSTEM

The final exam will determine 60% of the total course grade (6 points). (CB1, CG1, CG2, CE11)

Quizzes, homework and lab sessions will be used to award the remaining 4 points (40% of the final grade).

- 1. At the end of each unit or couple of units there will be a. The total maximum grade for these exercises will be 3 points. (CB1, CB2, CG1, CG2, CE11)
- 2. Laboratory sessions. There are three practical projects with maximum joint grade of 1 point. (CB2, CB5, CE11).

The students need 3.5 out 10 points in the final exam to successfully pass the course.

% end-of-term-examination:	60
% of continuous assessment (assigments, laboratory, practicals):	40

BASIC BIBLIOGRAPHY

- Alan Oppenheim and Alan Willsky Signal and Systems, Prentice Hall, 1997
- B. . Lathi Linear Systems and Signals, Oxford University Press, 2005
- Hwei Hsu Signals and Systems, Schaum's Outlines, 2011