uc3m Universidad Carlos III de Madrid

Materiales de ingeniería y su selección

Curso Académico: (2023 / 2024) Fecha de revisión: 06-04-2018

Departamento asignado a la asignatura: Departamento de Ciencia e Ingeniería de Materiales e Ingenieria Química

Coordinador/a: VELASCO LOPEZ, FRANCISCO JAVIER

Tipo: Optativa Créditos ECTS: 6.0

Curso: Cuatrimestre:

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Ciencia e Ingeniería de Materiales

OBJETIVOS

- Resolver problemas complejos relacionados con la selección de materiales para una aplicación concreta.
- Adquirir la capacidad para buscar, entender y diferenciar la información relevante para tomar una decisión, en el campo de la Ciencia e Ingeniería de Materiales.
- Relacionar conocimientos multidisciplinares para resolver un problema.
- Entender las razones que llevan a la selección de materiales.
- Desarrollar capacidades para trabajar en grupos y distribuir el trabajo en problemas complejos.
- Extrapolar los procesos de selección de materiales a otras disciplinas ingenieriles.
- Comunicar oralmente y por escrito conceptos, desarrollos y resultados relacionados con la selección de materiales.

La superación de esta materia garantiza que el alumno ha aprendido a:

- Ser capaz de establecer procedimientos de selección de materiales.
- Ser capaz de evaluar las razones por las que se emplean materiales en aplicaciones particulares.
- Entender como el proceso de selección afecta a la selección de materiales.

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

- 1. Selección de materiales
 - 1.1. Introducción
 - 1.2. Proceso de diseño y selección de materiales.
 - 1.3. Métodos de selección de materiales.
 - 1.4. Diseño y selección para propiedades mecánicas
 - 1.5. Diseño y selección para propiedades funcionales
 - 1.6. Aspectos medioambientales en la selección de materiales
 - 1.7. Métodos de selección de procesos
 - 1.8. Prototipado rápido y fabricación aditiva
- 2. Materiales para diferentes industrias
 - 2.1. Industria del automóvil
 - 2.2. Procesos de alta tecnología en la industria del automóvil
 - 2.3. Industria aeronáutica y aeroespacial
 - 2.4. Industria química
 - 2.5. Industria nuclear
 - 2.6. Aerogeneradores
- 3. Materiales de interés tecnológico y sus aplicaciones.
 - 3.1. Espumas metálicas
 - 3.2. Intermetálicos
 - 3.3. Materiales carbonosos
 - 3.4. Nanomateriales
 - 3.5. Materiales de cambio de fase

ACTIVIDADES FORMATIVAS, METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

- Clases en aula.
- Ejercicios en clase. Ejercicios individuales.
- Prácticas para manejar programas de selección de materiales.

- Trabajo en grupos.

SISTEMA DE EVALUACIÓN

Prácticas de laboratorio: 15%
Entrega de ejercicios: 50%
Presentación en clase: 15%
Tests de refuerzo: 20%

Peso porcentual del Examen Final:

0
Peso porcentual del resto de la evaluación:

100

BIBLIOGRAFÍA BÁSICA

- ASHBY, M.F. Materials selection in mechanical design, Butterworth-Heinemann, 1999
- BUDINSKI, K.G. Engineering materials: Properties and selection, Prentice-Hall International, 1996
- CHARLES, J.A.; CRANE, F.A.A.; FURNESS, J.A.G. Selection and use of engineering materials, Butterworth Heinemann, 1997
- SWIFT, K.G.; BOOKER, J.D. Process selection: from design to manufacture, Butterworth-Heinemann, 2003

BIBLIOGRAFÍA COMPLEMENTARIA

- AGUEDA, E. y otros Fundamentos tecnológicos del automóvil, Paraninfo.
- ASHBY, M.F.; JONES, D.R.H. Engineering Materials I: An introduction to their properties and applications, Pergamon Press, 1980
- HAPPIAN-SMITH, J. An introduction to modern vehicle desing, Butterworth Heinemann, 2002
- NOORANI, R. Rapid prototyping: principles and applications, John Wiley & Sons, 2006