Machine Learning

Academic Year: (2022/2023)

Department assigned to the subject: Computer Science and Engineering Department Coordinating teacher: ALER MUR, RICARDO

Type: Compulsory ECTS Credits : 6.0

Year : 3 Semester : 2

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Programming (Course: 1 / Semester: 1) Statistics (Course 2 / Semester: 1) Automata and Formal Language Theory (Course 2 / Semester 1) Artificial Intelligence (Course 2 / Semester 2)

LEARNING OUTCOMES

¿ Understand and design machine learning systems, understanding their limitations and applications

¿ Know, build and evaluate different machine practical cases.

learning techniques by applying them to

OBJECTIVES

- * Understand the basic techniques of Machine Learning
- * Learn to determine when to use Machine Learning in real problems
- * Learn to determine which technique is appropriate for each problem
- * Learn to apply the techniques in real problems from a practical point of view

DESCRIPTION OF CONTENTS: PROGRAMME

- 1. Introduction to Machine Learning
- 2. Classification and regression techniques
- 2.2. Nearest Neighbor methods
- 2.2. Decision trees and rules
- 2.4. Ensembles
- 3. Methodology
- 4. Unsupervised techniques
- 4.1. Clustering
- 4.2. Associative learning
- 5. Reinforcement learning:
- 5.1. Markov decision processes
- 5.2. Q-learning
- 6. Relational Learning

LEARNING ACTIVITIES AND METHODOLOGY

* Lectures: 1 ECTS. Oriented, among others, towards the competences related to the fundamentals, paradigms and techniques useful to build and evaluate intelligent systems based on Machine Learning.

* Practical/Lab sessions: 1 ECTS. Oriented towars the specific instrumental competences and competences about problem solving and application of acquired knowledge.

* Continuous assessment tests (individual work): 0,5 ECTS. Oriented towards the competences related to the fundamentals, paradigms and techniques useful to build and evaluate intelligent systems based

Review date: 25/05/2022 14:04:15

on Machine Learning.

* Practical works (team work): 3 ECTS. Oriented to develop and integrate the specific competences related to the resolution and implementation of practical cases, generating a report including the problem definition, the technique applied, the obtained results and their interpretation.

* Tutorials: Individualized or collective tutorials with the teacher.

* Final exam: 0,5 ECTS. Its objective is to influence and complement the development of specific cognitive abilities, especially the analysis, design, representation and formalization of knowledge and the application of techniques for solving problems.

ASSESSMENT SYSTEM

% end-of-term-examination/test:	30
% of continuous assessment (assigments, laboratory, practicals):	70

Final grade will be composed of 40% of individual work and 60% of team work. The individual work will consider both the individual activities performed during the course and a final exam. A minimum calification in the individual work will be required.

Specifically, the activities to develop are:

- Partial exams (10%): exams with theoretical content, to evaluate the knowledge acquired by the students trough the use of basic and advanced bibliography.

- Final exam (30%): theoretical-practical exam that requires a global knowledge about the main machine learning concepts.

- Tutorials and assignments (60%): tutorials will be about the use of machine learning tools and techniques; practices will be about practical applications that require the representation of knowledge for the analysis, design and implementation of a computing solution in intelligent systems based on machine learning.

The final grade is the summation of the partial exam plus assignments plus final exam.

BASIC BIBLIOGRAPHY

- Ian H Witten, Eibe Frank, Mark A Hall, Christopher J Pal Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques, Morgan Kaufmann Publishers Inc., 2016

- D. Borrajo, J. González y P. Isasi Aprendizaje automático, Sanz y Torres.
- S. Russel y P. Norving Artificial Intelligence: a modern approach, Prentice Hall, 2003

ADDITIONAL BIBLIOGRAPHY

- Basilio Sierra Araujo (Ed.) Aprendizaje automático: conceptos básicos y avanzados. Aspectos prácticos utilizando el software WEKA, Pearson Education.

- J. W. Shavlik y T. G. Dietterich (eds.) Readings in Machine Learning, Morgan Kaufmann.
- P. W. Langley Elements of Machine Learning, Morgan Kaufmann.
- R. Sutton and A Barto Reinforcement Learning: an Introduction, Kluwer Academic Publishers.
- Saso Dzeroski y Nada Lavrac Relational Data Mining, Springer Verlag.

BASIC ELECTRONIC RESOURCES

- Scikit-learn team . Scikit-learn: Machine Learning in Python: https://scikit-learn.org/stable/