uc3m Universidad Carlos III de Madrid

Numerical modelling of structural elements

Academic Year: (2022 / 2023) Review date: 22-06-2021

Department assigned to the subject: Continuum Mechanics and Structural Analysis Department

Coordinating teacher: ZAERA POLO, RAMON EULALIO

Type: Electives ECTS Credits: 3.0

Year: 4 Semester:

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

- -Mechanics of Structures
- -Elasticity and Strength of Materials

OBJECTIVES

Upon successful completion of this course, students will be able to:

- 1. Know and understand the scientific and mathematical principles underlying the Finite Element method.
- 2. Choose and apply modeling methods to the calculation of structures.
- 3. Understand the different methods and be able to use them, and know their limitations.
- 4. Work effectively both individually and as part of a team.

DESCRIPTION OF CONTENTS: PROGRAMME

- Fundamental concepts. Rayleigh-Ritz method. Finite Element method.
- Application to structures: truss and beam finite elements.
- Application to two- and three-dimensional problems: triangle, quadrilateral and brick finite elements.
- Pre-processing and modeling techniques: selection of the element, meshing, symmetries, boundary conditions.
- Post-processing and analysis of results.

LEARNING ACTIVITIES AND METHODOLOGY

- -- 50% of theory lessons: learn the methodologies to solve mechanical problems with the Finite Element Method.
- -- 50% of computer lessons: develop programming codes to solve mechanical problems with the Finite Element Method.
- -- Tutorials and personal work of the student; oriented to the acquisition of practical skills related to the program of the subject.

ASSESSMENT SYSTEM

- -- Continuous Evaluation based on a number of deliverable programming codes of practical works done by groups. The average qualification obtained amounts for 50% of the final qualification of the course.
- -- Final exam at the end of the semester. It amounts for 50% of the final qualification of the course.

% end-of-term-examination: 50

% of continuous assessment (assignments, laboratory, practicals...): 50

BASIC BIBLIOGRAPHY

- P.M. Kurowski Finite Element Analysis For Design Engineers, SAE International, 2004
- T.R. Chandrupatla, A.D. Belegundu Introduction to Finite elements in Engineering, Prentice Hall, 1991

ADDITIONAL BIBLIOGRAPHY

- E. Oñate Cálculo de Estructuras por el Método de los Elementos Finitos. Análisis Estático Lineal, CIMNE, 1995
- O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu El Método de los Elementos Finitos. Vol 1, Las Bases, CIMNE, 2010
- S. S. Quek, G.R. Liu The Finite Element Method: A Practical Course, Butterworth-Heinemann, 2003