uc3m Universidad Carlos III de Madrid

Econometría II

Curso Académico: (2022 / 2023) Fecha de revisión: 03/05/2022 19:04:05

Departamento asignado a la asignatura: Departamento de Economía

Coordinador/a: VELASCO GOMEZ, CARLOS Tipo: Obligatoria Créditos ECTS : 9.0

Curso: 1 Cuatrimestre: 2

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Econometría I, Matemáticas

OBJETIVOS

Este es un curso de posgrado en Econometría. La primera parte del curso discute inferencia sobre modelos lineales en condiciones estándar, prestando atención a los problemas de identificación en sistemas de ecuaciones simultáneas estructurales con restricciones lineales. La segunda parte del curso analiza modelos econométricos bajo dependencia serial y heterogeneidad no observada, que incluye modelos para series de tiempo y el análisis de causalidad en modelos dinámicos. La tercera parte del curso cubre inferencias asintóticas en modelos no lineales en parámetros, prestando especial atención al método generalizado de los momentos y la máxima verosimilitud. La última parte del curso discute herramientas de inferencia en regresión cuantílica, modelos no paramétricos, modelos semiparamétricos y contrastes de especificación.

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

- 1. Inferencia en modelos lineales de forma reducida. Causalidad e identificación. Estimadores de mínimos cuadrados. Inferencia asintótica. Estimación restringida. Errores de medida. Variables de control. Contraste de hipótesis.
- 2. Inferencia en ecuaciones lineales estructurales. Esetimadores de mínimos cuadrados en dos etapas. Contrastes de especificación: endogeneidad, restricciones de sobreidentificación, forma funcional, heterocedasticidad.
- 3. Inferencia en sistemas de ecuaciones de forma reducida. Inferencia en un sistema lineal multivariante basado en OLS; GLS y FGLS; Sistemas de ecuaciones aparentemente no relacionadas; El modelo lineal de datos de panel. El método generalizado de momentos: 2SLS, 3SLS. Constrastes de restricciones de sobreidentificación. Instrumentos óptimos.
- 4. Inferencia en sistemas lineales de ecuaciones estructurales. Identificación en un sistema lineal. Estimación después de la identificación. Identificación con restricciones entre ecuaciones y de covarianza. Modelos no lineales en variables endógenas.
- 5. Inferencia en presencia de heterogeneidad no observada. Métodos de efectos aleatorios. Métodos de efectos fijos. Métodos de primeras diferencias. Comparación de estimadores.
- 6. Inferencia con datos autocorrelacionados. Conceptos básicos: estacionariedad y dependencia débil. Modelos básicos: diferencias de martingala, procesos lineales, autoregresiones. Leyes de grandes números y teoremas centrales del límite. Autocorrelación e inferencia robusta a la heterocedasticidad. Contrastes de correlación serial. Estimadores GLS y IV.
- 7. Inferencia sobre en modelos no lineales en parámetros. Ejemplos: regresión no lineal, máxima verosimilitud, regresión cuantil, distancia mínima. Estimadores M y Z Propiedades asintóticas bajo supuestos clásicos. Propiedades asintóticas bajo supuestos mínimos. Métodos de optimización numérica: Newton-Raphson y Gauss-Newton. Estimadores de una etapa.

- 8. Método generalizado de momentos. Identificación mediante restricciones de momentos. Estimadores GMM. Inferencia asintóticas. Contrastes de restricciones de sobreidentificación.
- 9. Máxima verosimilitud. Consistencia y normalidad asintótica. Inferencia asintótica. Ejemplos: regresión binaria, modelos TOBIT y modelos de datos de conteo.
- 10. Regresión lineal cuantílica. Consistencia y normalidad asintótica. Inferencia asintótica. Análisis de causalidad mediante regresión cuantílica.
- 11. Inferencia en modelos no paramétricos. Estimaciones kernel de densidad y funciones de regresión. Regresión polinómica local. Regresión discontinua. Inferencia asintótica.
 - 12. Modelos semiparamétricos. Modelos de coeficientes variables, modelos de índice, estimación adaptativa.
- 13. Contrastes de especificación. Contrastes de bondad de ajuste para funciones de distribución. Validez de funciones de regresión y restricciones de modelos condicionales.

ACTIVIDADES FORMATIVAS, METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

Actividades formativas

Clase teórica Clases prácticas Listas de problemas Trabajo individual del estudiante Tutorías

Metodologías docentes

Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporciona la bibliografía para complementar el aprendizaje de los alumnos.

Clases prácticas con resolución de ejercicios y problemas que ilustran la teoría y permiten estudiar casos particulares y pequeñas extensiones.

Conjuntos de problemas para resolver en casa de forma individual que ayudan a sistematizar el estudio de la asignatura y repasar conceptos fundamentales.

SISTEMA DE EVALUACIÓN

Peso porcentual del Examen/Prueba Final: 60
Peso porcentual del resto de la evaluación: 40

Examen Final y Examen Parcial, junto con hojas de ejercicios.

BIBLIOGRAFÍA BÁSICA

- Davidson Econometric Theory, Blackwell, 2000
- Davidson, R. and Mackinnon, J.G. Estimation and Inference in Econometrics., Oxford UP, 1993
- Gorieroux, C. and Monfort, A. Time Series an Dynamic Models, Cambridge UP, 1997
- Hayashi, F. Econometrics, Princeton UP, 2000
- Stock, J.H. and M. Watson Introduction to Econometrics, Prentice Hall, 2010

- van der Vaart Asymptotic Statistics, Cambridge University Press, 1998

BIBLIOGRAFÍA COMPLEMENTARIA

- P.A. Ruud Classical Econometric Theory, Oxford University Press, 2000

RECURSOS ELECTRÓNICOS BÁSICOS

- Bruce Hansen . Econometrics: https://www.ssc.wisc.edu/~bhansen/econometrics/
- $Francis\ Diebold\ .\ Time\ Series\ Econometrics: \ https://www.sas.upenn.edu/\sim fdiebold/Teaching 706/econ 706 Penn.html$