
Compilers

Department assigned to the subject: Computer Science and Engineering Department

Type: Compulsory ECTS Credits : 6.0

Year : 3 Semester : 2

Coordinating teacher: GARCIA HERRERO, JESUS

Academic Year: (2021 / 2022) Review date: 29-06-2021

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Programming (1º, 1C)
Automata and Formal Language Theory (2º, 1C)

OBJECTIVES

Cognitive
1. Knowledge on theoretical basis of automata and formal languages
2. Knowledge on techniques for lexical, syntactic and semantic analysis
3. Techniques for code generation
4. Techniques for error recovery
5. Knowledge on code optimization methods
- Procedimental/Instrumental
1. Design of a formal grammar
2. Design of a lexical and syntactic ¡analyzers
3. Use of automatic tools (meta-compilers) for generation of analyzers
- Attitudinal
1. Ability to generate new ideas (creativity)
2. Concern with quality
3. Motivation for success
4. Interest for investigating and finding solutions to new problems

DESCRIPTION OF CONTENTS: PROGRAMME

Descriptors: Representation of formal languages, lexical analysis, syntactic analysis, semantic analysis, code
generation, error recovery, code optimization

UNIT I: Introduction
History of compilers and languages
Basics
Languages and grammars
Formal definitions of Grammar, Regular Expressions and Automata
Phases and structure of a compiler
Tombstone diagrams

TOPIC II: Lexical Analysis
Design of a Lexical Analyzer
Finite Automata Regular Languages ¿¿recognizers
Construction of a Finite Automaton. Examples
Automatic Lexical Analyzer Generator: LEX
Handling Lexical Errors

THEME III: Parsing
Introduction to Syntactic Analysis
Classification of methods of syntactic analysis
Descending Scan, Syntactic LL
LL obtaining table (1). Examples
Ascending Scan, Syntactic LR
Treatment of Ambiguous Grammars. Examples
Automatic Parser Generator: YACC

UNIT IV: Treatment of Syntactic Errors
Página 1 de 3

Errors. Detection and Recovery Strategies. Examples
Recovery with different analyzers
Descent parser LL
Up operator precedence parser
Ascending LR Parser

UNIT V: Semantic Analysis
Attribute Grammars, Examples, Registration
Specifying a translator: Translation Directed by Syntax and Translation Schemes
Evaluation of grammars
Construction of Abstract Syntax Trees

UNIT VI: Verification of Types
Introduction
Type expressions
Type systems. Checking static and dynamic
Sample construction and verification of simple types
Equivalence of type expressions
Overloading and Object Orientation

UNIT VII: Intermediate Code Generation
Types of Intermediate Languages
Codes three directions. Alternatives
Intermediate code generation: statements, arithmetic expressions, arrays
Control Flow Statements

UNIT VIII: Machine Code Generation
Machine and target machine code
Options machine code
Instructions and addressing and cost
Simple code generation from intermediate language
Basic blocks and flow graphs
Register allocation
Translation of other instructions

UNIT IX: Table of Symbols and Execution Environment
Memory allocation
Static and dynamic allocation
Stack and heap management. Examples
Function calls
Activation records
Passing parameters
Operations and organization of the symbol table

UNIT X: Code Optimization
Code optimization concept
Local optimization of basic blocks
Function preserving transformations
Elimination of dead code
Loops optimizatio
Global analysis of the data stream

UNIT XI: Specific Aspects
Other language processor
interpreter
Preprocesadotes and macroprocesadores
Language desig
Data structures and contro
Aspects of compilation for specific types of language
Examples of compilers

LEARNING ACTIVITIES AND METHODOLOGY

Theoretical lectures: 1.5 ECTS. To achieve the specific cognitive competences of the course.
Practical lectures: 1,5 ECTS. To develop the specific instrumental competences and most of the general
competences, such as analysis, abstraction, problem solving and capacity to apply theoretical concepts.

Página 2 de 3

Besides, to develop the specific attitudinal competences. They consist in proposing during the practical lectures a
compiler/interpreter project to be developed in teamwork.
-Guided academic activities (present teacher): 1 ECTS. The student proposes a project according to the teachers
guidance to go deeply into some aspect of the course, followed by public presentation.
-Guided academic activities (absent teacher): 1.5 ECTS. Exercises and complementary readings proposed by teacher.
Exercises and examination: 0,5 ECTS. To complete the development of specific cognitive and procedimental
capacities.

ASSESSMENT SYSTEM

Exercises and examinations are both learning and evaluation activities. The evaluation system includes the
assessment of guided academic activities and practical cases, with the following weights:
Exercises and examination: 40%
Practical case: 40%
Guided academic activities
- Present teacher: 15%
- Absent teacher: 5%

% end-of-term-examination: 40

% of continuous assessment (assigments, laboratory, practicals…): 60

BASIC BIBLIOGRAPHY

 - A. V. Aho and Ravi Sethi and J. D. Ullman Compiladores: Principios, Técnicas y Herramientas, Addison-Wesley
Iberoamericana, 1990.
 - Kenneth C. Louden Construcción de Compiladores. Principios y práctica, Thomson, 2004.

ADDITIONAL BIBLIOGRAPHY

 - Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, Koen G. Langendoen Modern Compiler Design, John Wiley & Sons,
2000.
 - Doug Brown, John Levine, Tony Mason Lex & Yacc, O'Reilly Media, Inc., 1995.

 - F. J. Sanchis and C. Galán Compiladores: Teoría y Construcción, Paraninfo, 1986.

 - Garrido, Iñesta, Moreno, Pérez Diseño de Compiladores, Publicaciones Universidad de Alicante, 2002.

Página 3 de 3

