uc3m Universidad Carlos III de Madrid

Energy and Water

Academic Year: (2020 / 2021) Review date: 22-12-2020

Department assigned to the subject: Thermal and Fluids Engineering Department

Coordinating teacher: PETRAKOPOULOU, FOTEINI KONSTANTINA

Type: Electives ECTS Credits: 3.0

Year: 4 Semester:

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Calculus I, II
Writing and Communication Skills
Thermal Engineering
Environmental Technology
Heat power plants
Engineering Fluid Mechanics

OBJECTIVES

By the end of this content area, students will be able to have:

- 1. a systematic understanding of the key aspects and concepts of thermal engineering and fluid mechanics.
- 2. coherent knowledge of thermal engineering and fluid mechanics including some at the forefront of the branch in mechanical engineering.
- 3. the ability to apply their knowledge and understanding to identify, formulate and solve problems of thermal engineering and fluid mechanics using established methods.
- 4. the ability to select and apply relevant analytic and modelling methods in thermal engineering and fluid mechanics.
- 5. the ability to conduct searches of literature, and to use data bases and other sources of information.
- 6. the ability to select and use appropriate equipment, tools and methods to solve problems of thermal engineering and fluid mechanics.
- 7. the ability to combine theory and practice to solve problems of thermal engineering and fluid mechanics.
- 8. function effectively as an individual and as a member of a team.
- 9. demonstrate awareness of the health, safety and legal issues and responsibilities of engineering practice, the impact of engineering solutions in a societal and environmental context, and commit to professional ethics, responsibilities and norms of engineering practice.

DESCRIPTION OF CONTENTS: PROGRAMME

1. Introduction

Water use in society (industrial, commercial, residential) Climate change, population increase and energy demand Water for energy & Energy for water

2. Water for Energy

Water use in fossil-fuel plants
Water use in renewable-based plants
Relationships among water use, fuel type, efficiency, technology & environmental impacts
Effects and consequences

3. Energy for water

Water scarcity, stress on water systems and energy generation Strategies to reduce water use Processes for desalination and water reuse

LEARNING ACTIVITIES AND METHODOLOGY

The teaching methodology will include:

- 1. Lecture slides and recommended bibliography.
- 2. Problem solving sessions related with the course topics.
- 3. Homework problems.
- 4. Preparation and presentation of scientific reports, including three practical sessions.

In addition, the class may include tutorials in groups.

ASSESSMENT SYSTEM

ORDINARY CALL:

- Continuous evaluation (100% of the total grade)

Contents:

- Practical problems on the topics of the course
- Short theoretical questions
- Presentations of scientific papers
 - Test quizzes
 - Project

The realization of the project is obligatory. A minimum grade of 4.5 out of 10 will be required in the final project to consider the continuous evaluation.

EXTRAORDINARY CALL:

The realization of the project is obligatory. If not delivered in the ordinary call, it must be delivered in the extraordinary call. A minimum grade of 4.5 out of 10 will be required.

% end-of-term-examination: 0 % of continuous assessment (assigments, laboratory, practicals...): 100

BASIC BIBLIOGRAPHY

- null Sustainable Water for the Future: Water Recycling versus Desalination, Elsevier, 2009
- Gustaf Olsson Water and Energy- Threats and Opportunities, IWA Publishing, 2012