uc3m Universidad Carlos III de Madrid

Álgebra Lineal

Curso Académico: (2020 / 2021) Fecha de revisión: 14/09/2020 14:22:09

Departamento asignado a la asignatura: Departamento de Matemáticas

Coordinador/a: SANCHEZ SANCHEZ, ANGEL Tipo: Formación Básica Créditos ECTS : 6.0

Curso: 1 Cuatrimestre: 1

Rama de Conocimiento: Ingeniería y Arquitectura

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Matemáticas de bachillerato científico tecnológico

OBJETIVOS

CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio

CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética

CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado

CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

CG2. Aprender nuevos métodos y tecnologías a partir de conocimientos básicos científicos y técnicos, y tener versatilidad para adaptarse a nuevas situaciones.

CG3. Resolver problemas con iniciativa, toma de decisiones, creatividad, y comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética, social y profesional de la actividad de ingeniero. Capacidad de liderazgo, innovación y espíritu emprendedor.

CG4. Resolver problemas matemáticos, físicos, químicos, biológicos y tecnológicos que puedan plantearse en el marco de las aplicaciones de las tecnologías cuánticas, la nanotecnología, la biología, la micro- y nano-electrónica y la fotónica en diversos campos de la ingeniería.

CG5. Utilizar los conocimientos teóricos y prácticos adquiridos en la definición, planteamiento y resolución de problemas en el marco del ejercicio de su profesión.

CE1. Resolver problemas matemáticos que puedan plantearse en la ingeniería y aplicar conocimientos de álgebra lineal, cálculo diferencial e integral, métodos numéricos, algorítmica numérica, estadística, ecuaciones diferenciales y en derivadas parciales, variable compleja y transformadas.

CE22. Diseñar, planificar y estimar los costes de un proyecto de ingeniería

CT1. Trabajar en equipos de carácter multidisciplinar e internacional así como organizar y planificar el trabajo tomando las decisiones correctas basadas en la información disponible, reuniendo e interpretando datos relevantes para emitir juicios y pensamiento crítico dentro del área de estudio.

RA1. Haber adquirido conocimientos y demostrado una comprensión profunda de los principios básicos, tanto teóricos como prácticos, así como de la metodología de trabajo en los campos de las ciencias y la tecnología, con profundidad suficiente como para poder desenvolverse con soltura en los mismos

RA2. Poder, mediante argumentos, estrategias o procedimientos desarrollados por ellos mismos, aplicar sus conocimientos y capacidades a la resolución de problemas tecnológicos complejos que requieran del uso de ideas creativas e innovadoras:

RA3. Tener la capacidad de buscar, recopilar e interpretar datos e informaciones relevantes sobre las que poder fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio;

RA6. Ser capaces de identificar sus propias carencias y necesidades formativas en su campo de especialidad y entorno laboral/profesional y de planificar y organizar su propio aprendizaje con un alto grado de autonomía en cualquier situación.

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

- 1. Números complejos.
- 2. Nociones básicas: espacios vectoriales y transformaciones lineales
- 3. Sistemas de ecuaciones lineales.
- 4. Determinantes.
- 5. Teoría espectral y diagonalización.
- 6. Producto escalar, ortogonalidad y mínimos cuadrados.
- 7. Matrices y ortogonalidad.
- 8. Formas bilineales y cuadráticas.

ACTIVIDADES FORMATIVAS. METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

AF1. CLASES TEÓRICO-PRÁCTICAS. Se presentarán los conocimientos que deben adquirir los alumnos. Recibirán las notasde clase y tendrán textos básicos de referencia para facilitar el seguimiento de las clases y el desarrollo del trabajo posterior. Se resolverán ejercicios, prácticas problemas por parte del alumno y se realizarán talleres y prueba de evaluación para adquirirlas capacidades necesarias. Para asignaturas de 6 ECTS se dedicarán 44 horas como norma general con un 100% de presencialidad.(exceptoaquellas que no tengan examen que dedicarán 48 horas) AF2. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. Para asignaturas de 6 créditos se dedicarán 4 horas con un 100% de presencialidad. AF3. TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE. Para asignaturas de 6 créditos se dedicarán 98 horas 0% presencialidad.

AF9. EXAMEN FINAL. Se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. Se dedicarán 4 horas con 100% presencialidad

MD1. CLASE TEORÍA. Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporcionan los materiales y la bibliografía para complementar el aprendizaie de los alumnos.

MD2. PRÁCTICAS. Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo.

MD3. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. Para asignaturas de 6 créditos se dedicarán 4 horas con un 100% de presencialidad

SISTEMA DE EVALUACIÓN

Peso porcentual del Examen/Prueba Final: 60 Peso porcentual del resto de la evaluación: 40

SE1. EXAMEN FINAL. En el que se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. El porcentaje de valoración será del 60%.

SE2. EVALUACIÓN CONTINUA. Se realizarán dos pruebas parciales a lo largo del curso que cubrirán al menos un 70% de la asignatura. El porcentaje de valoración del conjunto de las dos pruebas será del 40 % de la nota final.

BIBLIOGRAFÍA BÁSICA

- B. Noble and J.W. Daniel Applied linear algebra, Prentice Hall, 1988
- D.C. Lay, S.R. Lay and J.J MacDonald Linear algebra and its applications, Pearson, 2016
- G. Strang Introduction to Linear Algebra, Cambridge, 2016
- S.A. García and R.A. Horn A second course in linear algebra, Cambridge, 2017

- Sergei Treil Linear Algebra Done Wrong, Edited by the author, available from https://www.math.brown.edu/~treil/papers/LADW/LADW.html, 2017 (last update)

BIBLIOGRAFÍA COMPLEMENTARIA

- C.D. Meyer Matrix Analysis and Applied Linear Algebra, SIAM, 2000
- R.A. Horn and C.R. Johnson Matrix Analysis, 2nd edition, Cambridge, 2013

RECURSOS ELECTRÓNICOS BÁSICOS

- Sergei Treil . Linear Algebra done wrong: https://www.math.brown.edu/~treil/papers/LADW/LADW.html