Department assigned to the subject: Bioengineering and Aeroespace Engineering Department
Coordinating teacher: MERINO MARTINEZ, MARIO
Type: Compulsory ECTS Credits : 6.0
Year : 4 Semester : 2

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Calculus I, Linear Algebra, Physics I, Programming, Calculus II, Mechanics Applied to Aerospace Engineering, Advanced Mathematics, Modeling in Aerospace Engineering, Mechanics of Flight I.

OBJECTIVES

Formulate and solve orbital mechanics problems, use that knowledge to perform preliminary designs of space missions, and evaluate the capabilities of different spacecraft and space systems.

Competences: CG9, CG10, CB2, CB5, CECRA13.

DESCRIPTION OF CONTENTS: PROGRAMME

1. Two body problem

Conservation laws
Conics and orbital elements
2. Kepler's equation

Formulation for the elliptic, parabolic, hyperbolic cases
Numerical solution
3. Orbital maneuvers

Fundamentals of spherical trigonometry
Hohmann, bielliptic transfers; plane change; phasing maneuvers, electric orbit raising
4. Preliminary orbit determination

Gibbs problem, Gauss problem
Lambert's problem
Porkchop diagrams
5. Perturbations

Special perturbation methods
General perturbation methods
Drag, solar radiation, third body
Geopotential and spherical harmonics
6. Interplanetary trajectories

Patched-conics method
Launch and B-Plane targeting
7. Relative motion and rendezvous

Clohessy-Wiltshire equations
8. Circular restricted three body problem

Derivation and normalization. Jacobi's energy integral
Lagrange libration points
Stability and trajectories near Lagrange points
9. Space vehicles: attitude dynamics

Quaternions. Free body attitude dynamics
Gravity gradient
10. Introduction to space missions and space systems

Application orbits, types of missions
Spacecraft subsystems
LEARNING ACTIVITIES AND METHODOLOGY
Theory sessions in master classes
Problem sessions in reduced groups
Computer sessions with mathematical software

Personal and group work

ASSESSMENT SYSTEM

End-of-term exam (60\%)
Continuous evaluation (40\%)
In order to pass the subject, two requirements need to be met:

1) to have a MINIMUM mark of $4.0 / 10$ in the end-of-term exam;
2) to have a minimum overall mark of $5.0 / 10$ (weighing 60% the end-of-term exam mark and 40% the mark of the continuous evaluation).
\% end-of-term-examination: 60
\% of continuous assessment (assigments, laboratory, practicals...): 40

BASIC BIBLIOGRAPHY

- Hanspeter Schaub and John L. Junkins Analytical mechanics of space systems, AIAA, 2003
- Howard D. Curtis Orbital Mechanics for Engineering Students, Elsevier, 2010

ADDITIONAL BIBLIOGRAPHY

- Peter Fortescue, Graham Swinerd, John Stark Spacecraft systems engineering, John Wiley and Sons, 2011

