Wind and photovoltaic generation

Academic Year: (2020/2021)

Review date: 26-10-2020

Department assigned to the subject: Electrical Engineering Department

Coordinating teacher: CHINCHILLA SANCHEZ, MONICA

Type: Electives ECTS Credits : 6.0

Year : 4 Semester :

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Electric Engineering Fundamentals

OBJECTIVES

The student must be able to:

- select and analyze so wind energy isolated systems as photovoltaic autonomous systems.

- also the student will learn both grid connected systems.

The student will be able to make a project related to those areas: he will make the component selection, use of catalogs and technical documentation.

DESCRIPTION OF CONTENTS: PROGRAMME

MODULE 1: PHOTOVOLTAIC (PV) SYSTEMS

PV 1-Introduction to solar energy

1.1- Solar energy all over the world

1.2-Resource

PV 2. Basic Technology.

2.1- Solar cell. Basic principles and current technology.

2.2- Characteristic of the solar cell. Exercises solar cell, cell temperature.

PV 3. Solar panels

3.1- Solar panels.

3.2-Generators electrical characteristic of photovoltaic solar panels. Varying voltage of the photovoltaic panels. Testing. Characteristic curve with variation of irradiance and cell temperature.

3.3 Architectural integration.

3.4 Solar tracking

PV 4-Inverters.

4.1-Types and functions. Performance.

4.2-Regulation

4.3- Tracking the maximum power point of photovoltaic generrador (MPPT)

PV 5- Autonomous photovoltaic systems.

5.1 -Components. Batteries. Charge regulators. Inverters.

5.2- Autonomous photovoltaic systems: and dimensioning schemes.

5.3-Sizing exercises depending on the location and energy requirements.

5.4- Project; complete sizing

PV 6. Photovoltaic Systems PV grid connected.

6.1 Schemes

6.2-Photovoltaic systems connected to the grid. Protections.

6.3-Regulations.

6.4- Sizing with specific software (PVSYST).

PV 7 Net balance.

7.1- Schemes

7.2- Characteristics. Examples

MODULE 2. WIND POWER

WIND 1. Wind Energy. Current status and resources.

1.1- Current status of wind power around the world

1.2- Wind resource. Factors affecting wind production.

1.3-Models of assessing wind potential in a wind site.Atlas IDAE.

WIND 2. Energy Production 2.1- Power curve. Defining FC, HE.

- 2.2- Basic exercise for energy calculation (programs and web Alwin IDAE)
- 2.3- Energy calculation; project focused to a wind generator and site (selected by the student)

2.4- Project for a wind park electric energy production.

WIND 3. Wind Technology

- 3.1- Wind turbine. Types. Components: turbine, tower, hub, generator, gearbox, converter, protections.
- 3.2- Wind turbine. Sizing wind generators.
- 3.3- Wind generators.Miniwind.Wind energy from the sea.
- 3.4- Wind generators. Speed variation associated with the variation of the blade pitch of the turbine.
- 3.5- Energy calculation as a function of wind speed, blade pitch, ¿

WIND 4. Wind energy systems connected to the grid .

4.1 Evolution of the control systems: fixed speed and speed. Tracking the maximum power point with maximum efficiency at part load. Speed control systems and power at part load and full load.

4.2- Wind farms.Sizing. Network Attached Project wind farm. Using specific software (RETScreen).

4-3. Network integration

4.4- Voltage Dips. Stability. Regulations.

4.5-Exercise voltage network nodes

WIND 5. Autonomous wind systems.

5.1-Types and functions.

5.2-Windpumps.

5.3- Selection.

WIND 6. Regulation

6.1-Regulation in the field of renewable energies.

6.2-Spanish case.

MODULE 3- Hybrid systems.

3.1-Microgrids with photovoltaic generation, wind and accumulation systems. Types and functions.

3.2- Regulations.

3.3- Dimensioning with specific software (Homer Pro).

MODULE 4. SUSTAINABILITY

4.1- Sustainability.

4.2-RREE. Summary by technologies.

4.3- Energy efficiency

4.4-Energy from the sea.

LEARNING ACTIVITIES AND METHODOLOGY

- Teacher lessons, doubts resolution classes -in reduced groups-, students presentations, individual mentorship and student work to acquire theoretical concepts (3 ECTS credits).

- Experimental lessons in the Laboratory, exercise classes in reduced groups, students presentations, individual mentorship and student work to acquire experimental concepts (3 ECTS credits).

ASSESSMENT SYSTEM

Continuous assessment based on work, class participation and tests and assessment of skills and knowledge. FIRST PART (50%) (Photovoltaic)

Questions and tests during classes

Project for dimensioning the PV plant connected to the network. Exercise with PVSyst (40 out of 100) Module 1 Practice (compulsory)

FV exam (60 out of 100). Theory, test, practice and problems questions. Minimum note: 4 points. If it is obtained> 5 It frees up material, for the ordinary and extraordinary call.

SECOND PART (50%) (Wind, Hybrid Systems and Sustainability)
Questions and tests during classes
Wind Turbine Project (40 out of 100).
Practices 2 and 3 (compulsory)
Exam: Sustainability, hybrid systems and Wind (60 out of 100). Theory questions, tests, practice and problems.
Minimum exam mark: 4 points out of 10.
Other tests (to upload note)
Total evaluation of the evaluation system:
70% continuous evaluation (includes a 10% evaluation assigned to the laboratory).
30% final exam (in ordinary call).
Minimum final exam mark: 4 points out of 10.

% end-of-term-examination:	30
% of continuous assessment (assigments, laboratory, practicals):	70

BASIC BIBLIOGRAPHY

- Deutsche Gesellschaft Für Sonnenenergie Planning and Installing Photovoltaic Systems, EarthScan, 2008

- E. Lorenzo Energía Fotovoltaica, Progensa, 2014
- Jose M. Fernandez Salgado Guia Completa de la Energía Solar Fotovoltaica, AMV Ediciones, 2007
- Rodríguez Amenedo, José Luis Sistemas eólicos de producción de energía eléctrica , Rueda, 2003

ADDITIONAL BIBLIOGRAPHY

- Ecofys Planning and Installing Photovoltaic Systems: A Guide for Installers, Architects and Engineers, Earthscan, London, , 2005

BASIC ELECTRONIC RESOURCES

- IRENA . International Renewable Energy Agency: http://www.irena.org/

- NASA . NASA Surface meteorology and Solar Energy - Location: https://eosweb.larc.nasa.gov/cgibin/sse/grid.cgi?email=skip@larc.nasa.gov

- PVGIS . Photovoltaic Geographical Information System: http://re.jrc.ec.europa.eu/pvgis/