High-performance computing for big data in companies

Academic Year: (2020 / 2021)

Review date: 08/07/2020 12:41:45

Department assigned to the subject: Computer Science and Engineering Department

Coordinating teacher: GARCIA BLAS, FRANCISCO JAVIER

Type: Compulsory ECTS Credits : 3.0

Year : 1 Semester : 1

OBJECTIVES

Basic Skills

* Knowledge and understanding that provide a basis or opportunity for originality in developing and / or applying ideas, often in a research context

* That the students can apply the broader (or multidisciplinary) acquired knowledge and ability to solve problems in new or unfamiliar environments within contexts related to their field of study

* Students must possess the learning skills that enable them to continue studying in a way that will be largely selfdirected or autonomous.

General Competencies

* Apply the theoretical underpinnings of the techniques for the high-performance processing of large volumes of data as a basis for the development and adaptation of such techniques to specific problems

* Identify different techniques and paradigms for processing large amounts of data, and differentiate them according to their theoretical and practical features

* Use skills for teamwork and getting along with other independently

Specific Skills

* Apply basic knowledge of big data programming techniques using advanced technologies and methods for treating large volumes of data

* Identify opportunities that data processing techniques can make to the improvement of the activity of enterprises and organizations

- * Provide basic and fundamental knowledge of big data processing frameworks
- * Identify and select suitable frameworks and software tools for the treatment of large amounts of data
- * Making efficient use of distributed platforms for high-performance data processing

Learning Results

- * Manage the basics of big data processing frameworks.
- * Ability to use high-performance architectures and technologies for large volumes of data.
- * Knowledge of design techniques and application development of high-performance big data computing.

* Skills to analyze and model the most appropriate frameworks for each problem, adapting to the specifications of individual cases

DESCRIPTION OF CONTENTS: PROGRAMME

- 1. Introduction to Big Data Processing
- 2. MapReduce Paradigm
- Storage Systems Big Data environments
 * HDFS as distributed file system
 - * Commands for managing files in HDFS
- 4. Frameworks for intensive computing data
- * Introduction to Apache Hadoop
 - * Functional Programming in Scala

- * Apache Spark
- * Access and processing a large volume of data
- * Streaming Data Processing
- 4. Management computational resources
 - * Introduction to Apache Yarn
 - * Deploying applications in corporate Big Data environments
 - * Tools for monitoring Big Data applications

LEARNING ACTIVITIES AND METHODOLOGY

Learning activities:

- * Lectures
- * Hands-on land lab projects
- * Personal student work.

Teaching methodology:

* Presential lectures imparted in the class, using multimedia and informatics support, to develop the main concepts of the course. Reading materials will be provided to complement students knowledge.

* Reading of recommended texts, from papers, technical journals, manuals and reports, to extend the student knowledge of the subject topics.

* Solving practical jobs, problems, etc. proposed in class (individually or in groups).

ASSESSMENT SYSTEM

% end-of-term-examination/test:	50
% of continuous assessment (assigments, laboratory, practicals…):	50

- 1.- Continuous evaluation (50%)
 - * Class activities
 - * Individual or collective projects made along the course
- 2.- Final exam (50%)

It is mandatory to obtain at least 4 points over 10 in each of the evaluable parts of the subject.

BASIC BIBLIOGRAPHY

- Holden Karau, Andy Konwinski, Patrick Wendell & Matei Zaharia Learning Spark, O¿Reilly, 2015

- Martin Odersky, Lex Spoon, Bil Venners Programming in Scala, Artima.