Actuaciones y Diseño de Sistemas Propulsivos

Curso Académico: (2020 / 2021) Fecha de revisión: 02/11/2020 23:43:20

Departamento asignado a la asignatura: Departamento de Bioingeniería e Ingeniería Aeroespacial

Coordinador/a: DISCETTI, STEFANO Tipo: Obligatoria Créditos ECTS: 6.0

Curso: 1 Cuatrimestre: 2

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Se espera que los alumnos tengan conocimientos básicos de sistemas de propulsión aeroespacial y turbomaquinaria.

OBJETIVOS

COMPETENCIAS

CB7 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio

- CG4 Capacidad de integrar sistemas aeroespaciales complejos y equipos de trabajo multidisciplinares
- CG5 Capacidad para analizar y corregir el impacto ambiental y social de las soluciones técnicas de cualquier sistema aeroespacial
- CG8 Competencia para el proyecto de construcciones e instalaciones aeronáuticas y espaciales, que requieran un proyecto integrado de conjunto, por la diversidad de sus tecnologías, su complejidad o por los amplios conocimientos técnicos necesarios
- CG9 Competencia en todas aquellas áreas relacionadas con las tecnologías aeroportuarias, aeronáuticas o espaciales que, por su naturaleza, no sean exclusivas de otras ramas de la ingeniería
- CG10 Conocimiento, comprensión y capacidad para aplicar la legislación necesaria en el ejercicio de la profesión de Ingeniero Aeronáutico
- CEB1 Aptitud para proyectar, construir y seleccionar la planta de potencia más adecuada para un vehículo aeroespacial, incluyendo las plantas de potencia aeroderivadas.
- CEB4 Comprensión y dominio de las leyes de la Aerodinámica Interna. Aplicación de las mismas, junto con otras disciplinas, a la resolución de problemas complejos de Aeroelasticidad de Sistemas Propulsivos.
- CEB6 Conocimiento adecuado de Aerorreactores, Turbinas de Gas, Motores Cohete y Turbomáquinas.
- CEB8 Capacidad para diseñar, ejecutar y analizar los Ensayos de Sistemas Propulsivos, y para llevar a cabo el proceso completo de Certificación de los mismos.
- CEB9 Conocimiento adecuado de los distintos Subsistemas de las Plantas Propulsivas de Vehículos Aeroespaciales.

RESULTADOS DE APRENDIZAJE

- Comprender los procesos de transferencia de calor y masa aplicados a los sistemas de propulsión aeroespacial.
- Analizar las actuaciones de los sistemas de propulsión aeroespaciales.
- Seleccionar y diseñar la planta de potencia más adecuada para un vehículo aeroespacial en función de su misión, incluyendo el diseño de los subsistemas de que se compone.
- Probar el correcto funcionamiento de las turbomáquinas como parte de un sistema propulsivo aeroespacial.

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

- 1. Revisión de los requisitos de los componentes del motor
- 2. El proceso de diseño del motor

- a. Los requisitos de misión
- b. Análisis de requisitos y de la misión
- Diseño paramétrico del ciclo C.
 - Turborreactor
 - Turborreactor con postquemador ii.
 - iii. Turbofan con flujos mezclados/separados
- Analisis de las actuaciones del motor
 - Comportamiento off-design (fuera de diseño)
 - ii. Matching de components
 - iii. Efecto de instalación en las actuaciones
- e. Ramjet y scramjet
- 3. Sensores, instrumentación y control
 - Requisitos del sistema de control y estrategias de control a.
 - b. Funciones básicas del sistema de control
- Lubricación y refrigeración 4.
 - Sistema de aceite: lubricante, tanques, tuberías, sistema de barrido a.
 - b. Sistema de aire secundario
 - c. Transferencia de calor en la turbina, film cooling, refrigeración interna.
- 5. Rodamientos y sellado
 - Rodamientos del eje principal; a.
 - Tipologías de sellado b.
- 6. Análisis estructural
 - Fundamentos de rotodinámica a.
 - Procedimientos de balanceado y supresión de vibraciones b.
 - Fenómenos aeroelásticos (flameo) en turbomaquinaria. C.
- 7. Ensayos y certificación de motores

ACTIVIDADES FORMATIVAS, METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

ACTIVIDADES FORMATIVAS

Clases teóricas Clases prácticas Prácticas en aula de informática Prácticas de laboratorio Trabajo individual del estudiante

METODOLOGÍAS DOCENTES

Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporciona la bibliografía para complementar el aprendizaje de los alumnos.

Lectura crítica de textos recomendados por el profesor de la asignatura: Artículos de prensa, informes, manuales y/o artículos académicos, para su posterior discusión en clase, o para ampliar y consolidar los conocimientos de la asignatura.

Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo.

Elaboración de trabajos e informes de manera individual o en grupo.

SISTEMA DE EVALUACIÓN

Peso porcentual del Examen/Prueba Final:

40

Peso porcentual del resto de la evaluación:

60

Para aprobar la asignatura es necesario superar 2 criterios:

1) tener una nota mínima de 4.0/10 en el examen final;

Peso porcentual del Examen/Prueba Final:	60
Peso porcentual del resto de la evaluación:	40

2) tener una nota mínima de 5.0/10 al ponderar con un 40% la nota de evaluación continua y un 60% la nota del examen final.

La evaluación continua incluye trabajos e informes de prácticas de laboratorio (40% de la nota final).

En la convocatoria extraordinaria será posible superar la asignatura bien mediante lo dicho anteriormente o obteniendo un 5.0/10 en el examen final (con una valoración de 100% del examen).

BIBLIOGRAFÍA BÁSICA

- Mattingly J.D., Heiser W.H., Pratt D.T. Aircraft Engine Design, AIAA EDUCATION SERIES J. S. Przemieniecki Series Editor-in-Chief, 2003

BIBLIOGRAFÍA COMPLEMENTARIA

- Boyce M.P. Gas Turbine Engineering Handbook, Butterworth-Heinemann, 2011
- Kerrebrock J.L. Aircraft Engines and Gas Turbines, The MIT Press, 1992
- Oates G.C. Aerothermodynamics of Aircraft Engine Components, AIAA, 1985
- Walsh P.P., Fletcher P. Gas Turbine Performance, Blackwell Science Inc, 2004
- null The Jet Engine, Rolls Royce Technical Publications, 1996