uc3m Universidad Carlos III de Madrid

Sistemas de Navegación Aérea

Curso Académico: (2020 / 2021) Fecha de revisión: 02-11-2020

Departamento asignado a la asignatura: Departamento de Bioingeniería e Ingeniería Aeroespacial

Coordinador/a: SOLER ARNEDO, MANUEL FERNANDO

Tipo: Obligatoria Créditos ECTS: 6.0

Curso: 1 Cuatrimestre: 1

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Los Estudiantes deberán tener on conocimeinto básico de navegación aérea: Concept ATM/CNS, meteorología, altimetría, anemometría, etc.

OBJETIVOS

COMPETENCIAS

Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación

Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio

Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios

Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades

Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo

Capacidad para la dirección general y la dirección técnica de proyectos de investigación, desarrollo e innovación, en empresas y centros tecnológicos aeronáuticos y espaciales

Capacidad de integrar sistemas aeroespaciales complejos y equipos de trabajo multidisciplinares

Capacidad para analizar y corregir el impacto ambiental y social de las soluciones técnicas de cualquier sistema aeroespacial

Capacidad para el análisis y la resolución de problemas aeroespaciales en entornos nuevos o desconocidos, dentro de contextos amplios y complejos

Competencia para planificar, proyectar, gestionar y certificar los procedimientos, infraestructuras y sistemas que soportan la actividad aeroespacial, incluyendo los sistemas de navegación aérea

Competencia para el proyecto de construcciones e instalaciones aeronáuticas y espaciales, que requieran un proyecto integrado de conjunto, por la diversidad de sus tecnologías, su complejidad o por los amplios conocimientos técnicos necesarios

Competencia en todas aquellas áreas relacionadas con las tecnologías aeroportuarias, aeronáuticas o espaciales que, por su naturaleza, no sean exclusivas de otras ramas de la ingeniería

Conocimiento, comprensión y capacidad para aplicar la legislación necesaria en el ejercicio de la profesión de Ingeniero Aeronáutico

Aptitud para definir y proyectar los sistemas de navegación y de gestión del tránsito aéreo, y para diseñar el espacio aéreo, las maniobras y las servidumbres aeronáuticas.

Conocimiento adecuado de la Aviónica y el Software Embarcado, y de las técnicas de Simulación y Control utilizadas en la navegación aérea.

Conocimiento adecuado de la Propagación de Ondas y de la problemática de los Enlaces con Estaciones Terrestres.

Capacidad para proyectar sistemas de Radar y Ayudas a la Navegación Aérea.

Conocimiento adecuado de las Tecnologías de la Información y las Comunicaciones Aeronáuticas.

Conocimiento adecuado de las distintas Normativas aplicables a la navegación y circulación áreas y capacidad para certificar los Sistemas de Navegación Aérea.

RESULTADOS DEL APRENDIAJE

Al concluir el curso el estudiante debe ser capaz de:

Comprender, definir y proyectar los sistemas y equipos de navegación y de gestión del tránsito aéreo. Conocer adecuadamente las distintas normativas aplicables a la navegación y circulación áreas, para así tener la capacidad de certificar elementos del sistemas de navegación aérea.

Resolver problemas electromagnéticos y evaluar el diseño de antenas embarcadas.

Analizar los sistemas de control de tráfico aéreo existentes y evaluar las tendencias futuras.

Evaluar el funcionamiento de los subsistemas de navegación, guiado y control de las aeronaves.

Desarrollar modelos de sistemas en tiempo real.

Implementar las técnicas avanzadas de navegación y control de aeronaves basadas en computador.

Explicar los conceptos de concurrencia, ejecución en tiempo real, sincronización,

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

Bloque I: El sistema de navegación aérea hoy

- 1 ATM/CNS (Air Traffic Management/Communication, Navigation, and Surveillance) concept.
- 2 Meteorología
- 3 Cartas Aeronáuticas, Maniobras y Procemientos
- 4 Planificación de rutas.
- 5 Performances, GNC (Guidance, Navigation, and Control) --> INS, GNSS, Kalman Filter.

Bloque II: El futuro sistema de navegación aérea

7 Introducción a SESAR y NextGen

8 Introduccion a la optimización

9 ATFM (Air Traffic Flow Management): modelado.

10 Algoritmos de detección y resolución de conflictos.

11 Gestión de trayectorias en ATM

ACTIVIDADES FORMATIVAS, METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

ACTIVIDADES FORMATIVAS

Clases teóricas

Clases prácticas

Prácticas en aula de informática

Prácticas de laboratorio

Trabajo individual del estudiante

METODOLOGÍAS DOCENTES

Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporciona la bibliografía para complementar el aprendizaje de los alumnos.

Lectura crítica de textos recomendados por el profesor de la asignatura: Artículos de prensa, informes, manuales y/o artículos académicos, bien para su posterior discusión en clase, bien para ampliar y

consolidar los conocimientos de la asignatura.

Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo

Visita de campo

SISTEMA DE EVALUACIÓN

Evaluación continua: 75% de la nota Examen final: 25% de la nota.

Nota mínima en el final para hacer media con Ev. Continua: 4/10

La Ev. Continua se basará en Laboratorios, casos de estudio/ejercicios y un examen parcial

Lab 1 (Flight Simulator)

Lab 2 (Algoritmos ATFM)

Lab 3 (Algoritmos de detección y evasión de conflictos)

Lab 4 (Simulación Software)

Ejercicios: Plan de Vuelo; Optimización.

Examen parcial: Estará basado parcial o totalmente en ejercicios asistidos por ordenador.

Los casos de estudio/ejercicios serán planteados durante las sesiones.

El estudiante debe saberque el examen final constará de dos partes: teórica y práctica. La parte práctica podrá estar basado parcialmente en ejercicios asistidos por ordenador.

Peso porcentual del Examen Final: 25 Peso porcentual del resto de la evaluación: 75

BIBLIOGRAFÍA BÁSICA

- Daniel Delahaye, Stezphane Puechmorel Modeling and Optimization of Air Traffic, Wiley-ISTE (2013), 2013
- James Wolper Understanding Mathematics for Aircraft Navigation, McGraw Hill Professional, 2001
- Mike Tooley and David Wyatt Aircraft communications and navigation systems. Principles, maintenance and operation, Routledge, 2007

BIBLIOGRAFÍA COMPLEMENTARIA

- DAvid Titterton and John Weston Strapdown Inertial NAviagtion Technology, IEEE, 2004, 2nd edition
- Javier LLoret Introduction to Air Navigation A technical and operational approach, Javier Lloret [Ed], 2016, second edition
- Nolan Fundamentals of air traffic control, Cengage learning, 2010
- Pérez, Arnaldo, Sáez, Blanco, Gómez El sistema de Navegación Aérea, Garceta, 2013
- Rogers Applied Mathematics in Integrated Navigation Systems, AIAA, 2003
- Stolzer Safety Management Systems in Aviation, Ashgate, 2010
- Sáez-Nieto, Francisco Javier Navegación Aérea: Posicionamiento, guiado y control, Garceta, 2012